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Editors Preface

We three editors of this volume are former Ph.D. students of Professor Mircea Cohn at
the University of Waterloo, Canada. Donald Grierson obtained his Ph.D. degree in 1968,
Alberto Franchi in 1977, and Paolo Riva in 1988, and as such, we span almost the entire
career of Professor Cohn at Waterloo. Even though we graduated during different
decades in his life, we share similar views of Mircea Cohn as an educator, researcher and
man. Together we recall that he was very firm in his resolve that we get the most out of
the education he was facilitating for us. Together we agree that he was inspirational in
his desire to have us carry out the very best research work we were capable of. Together
we feel particularly fortunate to have had such a dedicated and distinguished individual
as Professor Cohn as our Ph.D. research advisor. It is with great pleasure that we ack-
nowledge him as our mentor and friend.

We began in 1989 to plan this volume as a tribute to Professor Cohn on the occasion
of his 65th birthday in 1991. Upon contacting his many former students and research
associates from around the world, we were not surprised to find that they too shared our
feelings of respect and admiration for Mircea Cohn as an educator, researcher and man.
More than 60 authors from 14 countries have contributed 38 papers on a range of subjects
that mirror Professor Cohn’s own research interests over the years. Twelve papers con-
cern reinforced concrete structures, six papers concern prestressed concrete structures, six
papers deal with structural optimization problems, six papers investigate nonlinear
material behaviour and, finally, eight papers concern structural engineering topics of a
general nature. Most of the papers present original research results, while some papers
present original retrospective overviews of specific subject areas. The editors believe
that the collection of papers is an interesting and informative snapshot of progress and
advances in structural engineering and mechanics into the 1990s.

This volume is the proceedings of an international workshop on progress and
advances in structural engineering and mechanics, convened in honour of Professor Mir-
cea Cohn at the University of Brescia, Italy, on September 26-27, 1991.

June 1991 D. E. Grierson
A. Franchi
P. Riva
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Professor Mircea Z. Cohn

Professor Mircea Cohn is a distinguished engineer and scientist, and an old friend and
colleague to the undersigned, and to most of the contributors to this volume.

It seems particularly appropriate to celebrate his 65th birthday with an international
workshop at which many distinguished contributions are being made. The contributions
comprise 38 papers involving more than 60 authors from 14 countries, appropriately
reflecting Mircea Cohn’s international influence and reputation.

That reputation began to be established in the very early 1960’s when his publications
first came to the attention of research engineers in Western Europe and in North America.
On the basis of this work he was invited to join, as a corresponding member, the first
North American technical committee dealing with plasticity in reinforced concrete. This
was a committee of the American Concrete Institute, and the undersigned had the
privilege of writing to invite Professor Cohn to participate in this work.

Within a year, Professor Cohn and his family managed to emigrate from Romania, and
arrived in Western Europe. He was then invited to come to Canada, and join the Faculty
in Civil Engineering at the University of Waterloo, in Ontario, Canada. Waterloo was
then a very young university which was trying to develop a strong, modern School of
Engineering. Mircea Cohn obviously found Waterloo a hospitable and fertile environ-
ment for his work. He contributed significantly to the development of teaching and
research in Civil and Structural Engineering at Waterloo, and his own work flourished.

As his research biography given in the following pages will attest, there are few research-
ers who have made so many and such significant contributions, over so long a period of
time, as Mircea Cohn. He has more than 150 research publications, has organized seven
major scientific meetings, and has been the author or editor of ten books and conference
proceedings. His contributions to structural engineering include service as a member or
chairman of numerous committees dealing with specifications and codes of practice and
as an expert consultant.

XV



Xvi

As well as his contributions to the advancement of knowledge and of professional prac-
tice, he has also been a distinguished teacher. During his years as Professor at Waterloo
he has taught structural engineering to generations of undergraduates, and he has super-
vised some 40 research students proceeding to Master’s and Doctoral degrees. His stu-
dents have, in turn, made major contributions in many countries. As well, over the years
Professor Cohn has collaborated at Waterloo with more than 20 Post-Doctoral Fellows
and Visiting Professors from around the world.

These proceedings are a celebration of Mircea Cohn’s achievements and of the high
regard in which he is held by practicing and research engineers in many countries.

Douglas Wright
President
University of Waterloo

June 6, 1991
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SUMMARY

This paper critisizes the, in practice, generally applied method of the calcula-
tion of the effect of restrained imposed deformations on the structural
behaviour. In practice these deformations are "translated" into loads. This
approach is supported by Eurocode No. 2 "Basis of design" articles 2.2.2 and
2.3.3. This approach must be regarded as wrong.

To prove this statement a tension member is subjected to a load in combination
with a restrained imposed deformation. In the first part an engineering model of
a tension member in structural concrete, in this case without artificial loading
by prestressing, is presented. In the second part a method is proposed to
calculate the combined effect of external locad and imposed deformation.

INTRODUCTION

Generally, the following aspects of the behaviour of concrete structures are
treated separately in codes of practice and standards: crack width, deformation,
internal load, external forces. However, these aspects are closely related. The
mean deformation of the tensile zone of beams governs the curvature of the
beams. This mean deformation depends on the presence of cracks and especially
on crack width and crack distance. The development of cracks depends on the
cross—section of the reinforcement, the tensile strength of the concrete and the
bond characteristics of the reinforcement.

Crack width in concrete structures is often limited due to requirements of
water-tightness, durability, e.g. The structures are subjected to external loads
but in many cases also to restrained imposed deformations. The combination of
requirements on crack width and the external effects, to which the structures
are subjected, is often met in practice. However, no adequate measures are
available for the designer to control these aspects adequately. This control is
especially very important in the case of restrained imposed deformations.
Without a clear information about the relationship between forces and elonga-
tion this control is rather impossible. In view of the development of the model
"Structural concrete", which model was already - in status nascendi - proposed
by the author on an Advanced Research Workshop on Partial Prestressing in
Paris (1984), organized by Prof. Cohn, also an engineering model for a tension
member in structural concrete was developed.
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The engineering model of the tension member, without artificial loading by
prestressing, will briefly be introduced. It will be shown how this model can be
used as a design tool to control the effect of restrained imposed deformations.

THE ENGINEERING MODEL OF THE TENSION MEMBER

The N-¢ diagram used in this engineering model can easily be drawn [1].
In fact the necessary starting-points are:

- The stiffness of the uncracked member:
(EA)es = Ac-Ec(l + n.q) (1)

Q
n

reinforcement ratio
Es/Eec

- The stiffness As-Es of the bare reinforcement.

- The steel stress Os.cr — fully developed crack pattern:
Os.cr = Ocr/Q + 25 N/mm? (2)

Values of the characteristic tensile strength fct of concrete Ocr:

at a short—term stress rate: Ocr = 1.09 fct
at a long—-term stress rate : Ocr = 0.87 fect
at impact loading : Ocr = 1.30 fet.

- The characteristic yield strength fsy.

- Tension stiffening at tmax. Just fully developed crack pattern. Tension
stiffening is the reduction of the not obstructed elongation of reinforcement
or prestressing steel due to the bond of these steel components to the
surrounding concrete between two cracks. General case of bars (ats = 1.7) or
upper bars (ats = 1.95).

Emax = 2.87 - 107% Os.cr (general case) and emax = 2.5 - 107 Os.or (upper
bars).

The N-t diagram can be drawn as follows (see Fig. 1):

a. Draw the two lines with angles Ac-Ec(l + n.Q) and As-Es with the abecis.

b. Determine the point A with the coordinate As-Os.r on the line, with the
angle As-Es.

Draw an horizontal line AC in point A.
d. Mark point B on this line: BC = AC/Qts.
e. Draw a line in point B parallel with OA (or from B till E, e.g.).

Remark: The points D and F are in fact only of scientific importance. In the
engineering model only the line OA and point B counts.

Explanation

The limitation of the mean crack width wer, in the case of a just fully
developed crack pattern, depends on the requirements, which are valid.



N
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Fig. 1 Graphical display of the force-elongation relationship of the
engineering model
One can write the formula for wer as follows [1]:
Wer = Cifgk-Os.cr(Oscr — 25)1M (3)
With C1 = 2{(1+N)/8 C-EsiM (4)
C only depends on the bond-slip relationship Tesx = C.0x.
N1 = 1/1+N (5)
Ni depends on the position of the reinforcing bar in the cross-section or the
type of prestressing steel (wire or strand).

Characteristic bond-slip relationship

Bars - general case: C 0.38 fcem; N 0.18 (fcem = fee + 4 N/mm?2)

Upper bars : C = 0.82 fecem; N = 0.28

N1 Ca
Concrete strength fee - 20 25 30 35 40 50 N/mm?
Normal reinforcement
-General case 0.85 1.93 1.64 1.43 1.28 1.15 1.00 x 10-¢
-Upper bars 0.78 6.88 5.94 5.24 4.71 4.29 3.65 x 10°®

Background information is presented in a recently published book on "Structural
concrete".
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This combination results in more complex calculations. The aim of this example
is to show how load and restrained imposed deformation mutually influence the
structure.
The case of a tension member in structural concrete without artificial loading
by prestressing is chosen to avoid unnecessary complications.
The relationship between load N and deformation ¢ of this tension member is
given in Fig. 2. This relationship is identical with the N-¢ relationship of
Fig. 1.

N

NA _____
|
| >
Ng I
; |
i
A S .
0 (€, -€:) €
o g(1/1)

Fig. 2 N-¢ diagram of a tension member in reinforced concrete

Load N is a centric tensile force introduced via both ends of the tension
member.

An imposed deformation may be caused by a drop of temperature. Normally the
tension member will shorten. If, however, this shortening is impeded by struc-
tures, to which it is rigidly connected, restraining effects — tensile forces - will
occur. In this case it is assumed that the imposed deformation has the
magnitude £1. This deformation g1 is fully restrained. Therefore the effect is a
tensile force related to the restrained deformation gi.

The relationship N—¢ will be determined if the tension member is also subjected
to this restrained effect.

Fig. 2 explains how this determination can be carried out graphically.

One starts with point A on the diagram. In this case the coordinates of A are
the tensile force Na and the elongation ex.

The line OA is drawn. The angle (EA)x of this line with the horizontal axis is a
measure of the stiffness of the tension member under a tensile force Na. On
the horizontal axis the elongation (ex - €i1) is determined. From this value a
vertical line is drawn. The point of intersection of this line with the line OA is
B.
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The tensile force corresponding with B is Ns. Ne is the tensile force exerted in
both ends of the tension member if the restrained imposed deformation is &i.
The total tensile force in the tension member is Na. The tensile force in this
member, resulting from the restraining effect, has the magnitude:

(Na - NB) = e1(EA)x

The external tensile force in addition to this restraining effect is Ns.
Because the stiffness of the tension member is (EA)x the elongation of the
member due to this force N is:

(ex — 1) = Ne/(EA)x

The sum of both effects is a tensile force Na and a corresponding elongation
(partly restrained) ex.

Fig. 3 shows the result of an investigation when such a tension member is
submitted to two restrained imposed deformations €nn and gie.

Diagram 0 is the original N-t¢ diagram (g1 = 0).

Diagram 1 represents the relationship between the external force N and the
elongation ¢ if the restrained imposed deformation is eu.

Diagram 2 is identical with diagram 1. The restrained imposed deformation is
£i2.

The diagrams are determined with the graphical method of Fig. 2.

Ngo Ng1 Na2
1\ ﬁu A

(Np-Nglap

€4 (Na-Ngly

cry”

>
€

Fig. 3 N-¢ diagram for an external tensile force under different restraining
effects

Fig. 4 shows the relationship between the external exerted tensile force Ns and
the corresponding tensile force (Na - Ns) resulting from the restraining effects.
This figure shows very clearly that the magnitude of the tensile force in the
tension member resulting from the restraining effects depends strongly on the
magnitude of the externally exerted tensile force.



Fig. 4 Relationship (Na - Np)-Ns from Fig. 3
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CONCLUSIONS

This example therefore illustrates very clearly that:

1.

n

It is impossible to "translate" in a simple way - by the assumption of a
stiffness — a restrained imposed deformation into an (imposed) load. In
reality this problem is much more complex because in beams the magnitude
of the stiffness not only differs over the length of the beam, but again
depends on the magnitude of the load. In [1] a method is given for
determining this stiffness in structural concrete beams.

. The magnitude of the "imposed" load decreases considerably as the load

increases. The sensitivity of a structure to the magnitude of restraining
effects also decreases with increasing load. This decreasing sensitivity of a
structure for restrained imposed effects is very important because the
magnitude of imposed effects is, as a rule, not easy to predict. One should
always take into account a large dispersion in the magnitude of imposed
effects such as those caused by solar radiation, settlement of supports and
also by creep and shrinkage of concrete.

. It will be clear that in the ultimate limit state, assuming sufficient rotational

and elongational capacity of structural elements, these restraining effects are
mostly of minor importance compared with the magnitude of the external
loads (see ui and uz in Fig. 4). Therefore it is a wrong approach if
restrained im- posed deformations are "translated" into loads, taking into
account the rele— vant stiffness factor, generally of the homogeneous
uncracked tension member.

. It should be clearly stated, for example in standards, how the designer

should tackle the problems concerning restrained effects.
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1. Introduction
For buildings, two levels of loading are in general of primary interest:

W, - the maximum service or working load
W - the factored or maximum load

Structural engineers attempt to satisfy the following overall load criteria as effectively and
economically as possible:

Wi > W, (D)
W, > W Q)

where: W, identifies that load level at which a structural serviceability requirement
is first violated, and
W; s the computed resistance or load capacity

Life is, of course, somewhat more complex than this. First, many possible combinations of
load have to be considered. Second, all structural serviceability and structural safety criteria
have to be satisfied at all levels of structural response—that is, for the overall structural
system, for the various structural sub-systems, for all components, for all elements and their
critical sections, and for all the materials involved at the material level of response.

In more general terms, structural design might be considered to be the comprehensive
satisfaction of the following algorithm:

Z o (R, o R )
7
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where: £ indicates that each and every relevant situation must be considered
w  represents a specific level of loading
¢ represents a specific combination of loads
R™ represents the computed or model response for the situation involved
R® represents the specified or desired response for the situation involved
B represents benefits
$  represents cost
>  indicates that the LHS must be better than or at least comparable to the

RHS of the conditional equation.

Clearly the conditional criteria (1) and (2) are merely two simplified and specific versions of
the general criterion (3).

Developing a comprehensive set of design criteria for both structural serviceability and
safety is relatively simple. In Table 1, for example, a comprehensive set of necessary
design criteria is shown for an essentially flexural structural system. The structural design
process is necessarily complex because of the variety of types, levels and combinations of
loading and the number of performance requirements that have to be satisfied.

Structural design, however, can and should be an organized and orderly process involving
the systematic satisfaction of a set of conditional equations. Satisfying each of these
conditional equations entails determining the likely performance (based on some code-
approved behavioural model) and demonstrating that this performance is better than or at
least consistent with the limit of performance desired (code specified, owner prescribed or
otherwise defined). It is customary to refer to each of these conditional equations as a limit
state for structural design.

The foregoing represents an attempt to describe the structural design process
comprehensively and to categorize the intent of a structural design code. The primary
objective of this paper is to discuss current Canadian design procedures with the intention of
assessing the potential for applying plastic analysis in the design of R.C. buildings.
Although explicit reference is made to the Canadian situation, much of what follows also
applies elsewhere.



Table 1: Structural Serviceability And Safety Criteria

Level of Relevant
response constitutive Limiting states Comment
relationship
Structural Structural
Serviceability Safety
S
System Wva Aw <4, W:>Wf The distribution,
combination and
sfs sfs magnitude of loads
Sub-system WvaA Ay, <A W>We and displacements
are not necessarily
the same for each
<
Component WvA Ay £4,y WeWe level of response.
Element! Mvo Wy S W 8 <Omax
Section! Mvo My, <M, M; 2 Mg
Material? fve fy <fp €2 €max
Notes:
1. For essentially flexural structural systems. This is an oversimplification as all
stress resultants require similar criteria to be satisfied.
2. For all materials, e.g., concrete and steel in reinforced concrete.
Notation:
W represents load
M  represents bending moment
A represents deformation
w  represents crack width
6  represents rotation
¢  represents curvature
f  represents stress
€  represents strain

and subscripts
a  represents allowable or specified

w  represents the working load or maximum service load
p  represents the limit of linear elastic proportionality

r  represents the resistance or capacity

f  represents the factored condition.
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2. Design Effectiveness

Irrespective of the various possible combinations of loading, there is at least one critical
(i.e., minimum) level of combined loading at which structural failure (or loss of structural
integrity) actually occurs: Wymin. Similarly, there is also at least one minimum level of
loading for which structural serviceability is first violated: Wyp;,. Note that different load
combinations may be involved. Given that W, is specified, the ratio of the minimum failure
load and the service load can be referred to as the true index of safety for the structural
system. Thatis:

W .
True Load Safety Index =—g
w

This index could be disassembled as follows:

D

Wmmin VVf wrmin Wmmin
= — X )
Ww Ww wf Wrmin

Where each of these load ratios represent the following:

Wi is the ratio of the factored or maximum design load to the
W maximum service or working load. Both W¢and W, are code

specific and this ratio could be referred to as the code ratio.

wP. is the minimum value of all the computed magnitudes of the
o resistance of the structural design, i.e., a design value dependent
on load combination.

Wgnin is the amount by which the minimum resistance that the system

has been designed to resist exceeds the requisite factored design
load. This ratio must be greater than 1.0, but the amount by
which the ratio exceeds 1.0 represents over-design or reserve
load resistance. This could be called the designer ratio.

Womin  is the ratio between the actual critical failure load and the design
value for system capacity. This ratio represents the actual
reserve strength that the as-built structural system possesses. It
could be called the model ratio.

min
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The nature of each of these ratios is illustrated in Figure 1, where the as-designed
performance and the actual structural response are shown for a representative, statically
indeterminate flexural system. The true load safety index can therefore be said to be made
up of three load ratios, all of which are greater than unity. Clearly, the numerical value of
this load safety index could be used as a measure of the structural effectiveness of a design.
For an effective dcsi%n it could be postulated that, since Wr/ Wy, is code specific, both
Winmin / Wgnin and W_ . /W should be greater than 1.0, but both ratios should be as low
as possible. Each of the three load ratios needs to be individually examined.

3. W;/ W,—The Code Ratio

This ratio is readily quantified, as it is simply the code-specified maximum loading divided
by the code-specified maximum service or working load. In other words this ratio
represents the proportion of load beyond the service load that the structure must be designed
to accommodate in order to meet code-sanctioned safety requirements. This ratio is
independent of the designer and analysis procedures.

In accordance with current code [1] procedures in Canada, this ratio can be expressed as
follows:

Wf _ (X.DD + ‘Y\|I[(lLL + (X.QQ + aTT]
W, D+ y[L +Q+T]

where D, L, Q, and T represent dead, live, seismic or wind, and thermal effects
respectively,

and v is an importance factor
vy is a load combination factor
o is a load factor

By far the most common consideration in the case of flexural systems involving beams and
slabs, is the following situation:

Wf U.DD + (XLL

W,  D+L
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This ratio is very important for the designer because it quantifies precisely the range within
which use can be made of any inelastic, non-linear capabilities. Obviously, response up to
and beyond W, must be linear and elastic to satisfy the general requirements for repeatable,

acceptable and calculable service load response. Conversely, there are economic incentives
for the structure to have a maximum strength greater than but as close as possible to Wy.

For any load combination on an essentially flexural structure, there is some load level at
which some critical section first undergoes flexural yield, i.e., there is flexural yield at some
section, j say, where the moment My is reached before flexural yield occurs anywhere else,
hence Wy;. By definition this occurs when the tension reinforcement yields in tension. It is
at this stage that significant levels of inelastic deformation are initiated for the system or sub-
system level of response, but note that inelastic response of the concrete can be initiated at
moment levels less than M. This load level (or the associated overall load factor) can be
used as a design operator to identify when system inelasticity is initiated, e.g.:

We Wy W

ww - Ww wyl
where Wy1  represents the amount by which Wy, must be greater than the
W, design working load to ensure that all considerations of structural

serviceability are met. A value that is often mentioned [2] [3] as a
suitable minimum is 1.20.

Z

is indicative of the "room" available within which it is economical
y1  and possible to capitalize on any non-linear, inelastic capabilities of
the structure.

and

£

It is instructive to assess the extent of this "room" and to comprehend the impact of changes
to the codes in recent years. Consider Table 2, which lists the numerical factors in various
codes over the last 20 years. Figure 2 provides a graphic indication of the changes to the
dead and live load factors. This figure clearly demonstrates that if Wy, / W, is limited to
1.2 for example, then the room available for utilization of flexural inelasticity has been
significantly reduced with each successive code. For example, a structure with comparable
values for dead and live load (L. / D = 1) would in 1990 have less than 40 per cent of the
"room" available in 1970. This action on the part of the code-writing agencies will have had
an important impact on the potential for using inelastic methods of analysis and design.
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Table 2: Codified Load Factors And Moment Or Material Multipliers

LOAD FACTOR
LOAD NBC NBC CSA NBC NBC NBC NBC
1965 1970 11973/77] 1975 1980 1985 1990
Gravity Deadload D 1.5 1.5 14 14 14 1.25 1.25
Gravity Liveload L 1.8 1.8 1.7 1.7 1.7 1.5 1.5
Wind Q - - 1.7 1.7 1.7 1.5 1.5
Seismic Q --- - 1.8 1.8 1.8 1.5 1.5
Thermal T --- --- 14 14 14 1.25 1.25
Stress Resultant 09 0.9 09 09 0.9 N/A N/A
Material Steel/Concrete| N/A N/A N/A N/A N/A 10.85/0.6] 0.85/0.6
§ 1G70NBGG . o e eom=n 'iLgS‘UM """"""""""" {f' --------------------
------- L Sl : =
I B e |
—————— : 1985 *»—%7: 35 :
W % DOMAIN FOR INELASTIC RESPONSE%
; | ;
2 " H2 H
= s s s
0 i : E
0 05 i 1 15 2
L/D - Ratio of Live Load to Dead Load

|---- NBC 1966/70 — — CSA 1973/77 ===« NBC 1985/%0 |

Figure 2:

Inelastic Response Domain
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4. WPmin | Wy — The Designer Ratio

The designer ratio indicates the amount by which the structural designer has chosen to
overdesign the system for structural safety Given that the designer used current code-
permitted design procedures to evaluate W , then it is solely the designer’s responsibility to
decide on the magnitude of this ratio. Whllc the ratio cannot be numerically less than 1.0,
the amount by which the ratio is greater than 1.0 mdlcates the reserve that has been
provided. In general, there will be numerous values for W / Wg — each greater than or
equal to the minimum value and each involving a different combmauon of loads.

The margin by which these ratios exceed 1.0 indicates the extent of designer-induced cost.
Included in this margin are the following:

1. Rationalizations such as those made in the choice of the number of bars and the
size of bars to meet the computed values for tension, compression, diagonal
tension and torsional reinforcement.

ii. Rationalizations such as those made in detailing and laying out reinforcement—
for example, the choice of one size of bar for top steel and another single-size
bar for bottom reinforcement. Another example is the attempt to standardize,
simplify and replicate reinforcement layouts. In general, the avoidance of error,
speed of placement and simplification are, in relative terms, more cost effective
than minimizing the volume of steel.

ii. Rationalizations such as those made in order to maintain member dimensions,
e.g., width and depth of beams, shape and size of columns, etc, and minimize
formwork costs.

iv, Simplification of design calculations, for instance by ignoring the contribution of
available compression reinforcement in beams.

The net effect is to increase most, if not all, values for this index. However, these indices
are amenable to optimization and, provided that the appropriate objective function is used,
the dcmgncr can operate on these indices in order to minimize and equalize the values for
W / W The actual magnitude of this index will of course be project and designer
dependem but it would not be unrealistic to expcct a minimum value of about 1.05,i.e.,a5
per cent reserve. The average value of all W / Wi values would be somewhat larger and,
the more complex the structural system, the greater the average value is likely to be.



16

Two additional points need to be made with regard to the designer ratio. First, there are
really two designer ratios. Whereas W?/ Wrt is an index of safety, the ratio Wy; / Wy, is an
index of serviceability. With the latter ratio, it is necessary but not sufficient for Wy, to be
greater that Wy,. To satisfy all relevant serviceability criteria, it is likely that this ratio would
have to be greater than 1.2, as indicated previously. Second, in certain circumstances, one
or more scrwceablhty considerations, e.g., a stringent deflection limit, can raise the value of
the ratio W A/

5. Womin / Wrmm —The Model Ratio

This ratio is indicative of the reserve in load capacity due to conservatism inherent in
current, code-permitted, design procedures. Note that the minimum value for load capacity
and the minimum value for the design load capacity do not necessarily occur for the same

loading combination and that there may be other values for W, / WP that can be evaluated.

One problem in evaluating this ratio is establishing a value for the numerator. The actual
value for W,,..;;, can be established by destructive testing which is feasible in only a limited
number of situations. However, a lower-bound estimate of W, can be obtained by
analysis. Of course, this analytical procedure must be somewhat more sophisticated and
more accurate than the code-permitted design procedure that has been used to establish W
Before considering what analytlcal procedure could be used to evaluate W, consider the
model used to evaluate W in the current Canadian Codes. [1]

5.1 W? For A Statically Determinate Flexural System

In a statically determinate flexural structure, e.g., a simple beam, the maximum capacity of
the system is realized when the maximum flexural capacity of the single critical section is
attained, i.e., W;, occurs when M = M,. Moment and load values are proportional, and it

follows that :

A/ . .
—— = — = —— l.e., the model ratio

and 5 = MMfw— 1.e., the code ratio



WP
d ; M"e the desi ti
an w - = xr 1.€., the designer ratio.

We M 5

In accordance with current code procedures the flexural capacity of a singly reinforced,
under-reinforced rectangular concrete section may be determined as follows:

Mr=¢sAsfy(d‘a/2)=Asfyd¢s(l'a/Zd)

where: a =..¢Lé5_fy_d
¢, bd f.'.85

and 5, . are multipliers or material strength factors. Currently values of 0.85 and
0.6 are used for steel in tension and concrete in flexural compression
respectively (see Table 2). The effective stress-strain relationships are
shown in Figures 3(i) and 3(ii).

Although this probabilistic approach is used in much of the Western world, the use of
material strength factors introduces at least two serious anomalies.

The first anomaly involves the strain distribution at limiting flexural strength. Not only is
there a very low probability of this strain distribution ever occurring, but it is essentially a
fiction. On the other hand, if we acknowledge that design at this load is always fictitious,
then, in relative terms, the mechanics associated with ¢, = 0.85 and ¢, = 0.6 constitute a
fairy tale.

The second anomaly concerns the actual magnitude of M,. It is so low that certain problems
arise. Compare the value for M, with the corresponding value for My i.e., when flexural
yield of the tension reinforcement occurs. Given that ¢, = 0.85 and ¢, = 0.6 are predicated
upon a low-probability event and given that we are attempting to calculate what is likely to
happen, it is appropriate to presume that the specified materials have been used. Therefore,
a reasonably accurate estimate of My may be obtained as follows:

M, = A, f, d-kd/3) = A f,d (1 - k/3)
where: k= \j n2p2 + 2np - np

and n=E /E,
p=A;/bd
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It follows that M,/ M= 0.(1 - a/2d) / (1 - k/3). For 400 MPa reinforcement and various
types of concrete, the variation in M,/ M, values in terms of p is shown in Figure 4. It will
be noticed that not only is M, less than M, but it is usually much less than M,. For
example, for a reinforcement ratio of 1 per cent and 20 MPa concrete, M, is only equal to
0.75M,. What this means with regard to the design response of the member and the actual
response of the system is shown in Figure 5 and 6(i).

Clearly M(,>My>M;>M and thus Wmmin>wy1>W?>Wf. Given the need for a safe and
conservative method of calculating Mr, this result is not unexpected. However, since the
probabilistically derived factors of ¢ and ¢, are predicated on a very low probability of
occurrence, it follows that in the relatively unlikely event that the load attains the W level, it
is highly likely that the actual response will be nominally linear elastic, i.e., before flexural
yield. In fact, given that the designer ratio is greater than 1.0, and that the concrete quality
is probably better than the specified 28-day strength, it is highly probable that when W =
Wi, both system and section response are still well within the pre-yield range.

To evaluate a lower-bound version of the numerator in the designer ratio, one could do one
of the following:

i. let Wp, be associated with M; computed on the basis of ¢, = 9= 1, or

ii. allow for any strain hardening of the steel and more accurately model the
properties of the concrete, and then evaluate My, and hence Wy, using a more
sophisticated procedure than that currently specified in the code. This is
relatively simple to do.

The value for the code ratio, M, / My, can then be evaluated and, not unexpectedly, will be
seen to be significantly greater than 1. Some of this reserve provides for the effects of poor
quality materials and poor workmanship, or both. Whether the magnitude of the Code ratio
is correct is not the main issue. Of greater importance is the methodology, in particular the
use of the material factors, ¢, and ¢...
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5.2 W:) for Statically Indeterminate Flexural Systems

In non-seismic regions, it is unlikely for the present and foreseeable future that codes would
permit limit design procedures to be applied to reinforced concrete structural systems in
general. At present, beam systems—such as continuous beams (some bridges), one-way
slab and wall systems and beams in braced or partially braced structures—are generally
acknowledged to be amenable to an elastic-plastic design procedure. In all these systems or
sub-systems, given the practicalities of construction (uniformity, symmetry, etc.) and the
nature of the loads (distributed), there will usually be two, at most three, plastic hinges that
can form because the target failure mode will be partial collapse due to a beam mechanism.
Accordingly, this discussion can be limited to the beam systems or sub-systems mentioned
above.

The moment-curvature relationship is code prescribed to be either a tri-linear (allowing for
uncracked response) or a bi-linear relationship, with a flat-top region having a plastic-
moment value of M; and a limiting curvature of % It follows, therefore, that some degree
of inelastic response could be used to evaluate W_". In fact, the Canadian Code explicitly
permits up to 20 per cent moment redistribution in beams. Values for W? could be
established and, provided there is adequate ductility and Wypin, > Wy, the design would be
acceptable.

Consider, however, what the behaviour of this structure is likely to be if the actual load level
approached W¢—a relatively improbable event. The combination of detrimental influences
comparable in effect to ¢ = 0.85 and ¢, = 0.60 is highly improbable. Because a statically
indeterminate system has more than one critical section, it follows that a statically
indeterminate system must have a lower probability of failure than a statically determinate
system. First, all the critical sections cannot be similarly and equally affected. Second, the
first or even the second critical section to attain flexural yield would not necessarily be the
section affected by the code-specified amount. Thus it has to be acknowledged that, in
general, current code procedures produce reinforced concrete structures with different
degrees of probability of failure.

Again, compare the likely behaviour of a structure as W tends to Wr. Because My is greater
than My, and because there is a much greater probability that My rather than M, approximates
the actual yield moment, it follows that first yield (at the sagging section or at one or both of
the hogging sections) actually occurs at a load level significantly larger than that predicted by
the relevant M, value.
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Similarly, the second and third critical sections to attain flexural yield will do so at moment
levels much closer to the computed yield moment values than their M; values. Consider the
representative situation illustrated in Figure 6(ii) where the overall load-displacement
relationship for the code model (¢, = 0.85 and ¢, =0.60) and the likely elastic-plastic system
(6 =9, =1) and the "actual” response are shown.

In this figure, first yield is shown to occur before the code model attains maximum strength,
i.e., the load level at Yy is shown to be less than the maximum load at R and less than W7,
Now, given that two or at most three hinges can occur and that the designer ratio is greater
than 1, it is likely that in many instances Y; will occur at a load level greater than Wy. In
those instances where flexural yield does occur before Wg, there will not be much post-yield
deformation before the Wt load level is reached. In general, it is unlikely that a plastic hinge
will occur within the range of the design loads.

Irrespective of how Wi, is determined, it is evident that we currently have a situation
where:

i any statically indeterminate structure will have a larger reserve against overload
safety than a statically indeterminate one, and

i structures have a very low probability of ever reaching flexural yield before the
overload level of Weis attained.
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6. Serviceability Considerations

All relevant structural serviceability criteria need to be identified and satisfied and, in recent
years, a great deal of work has been done in this regard. Only two issues are considered
here: the limit state for concrete in flexural compression, and the limiting value for bending
moment.

6.1 The Limit State for Concrete in Flexural Compression

The Canadian Code does not explicitly specify a limit for flexural compression under service
loads, apparently for two reasons: current practice (largely the load and material factors)
makes it unnecessary, and it would cause needless complication.

Burnett and Kelly [4] reviewed the situation and argued that there was a need for explicit
satisfaction of this limit state. They recommended that a proportionality limit of 0.55f" be
used, i.e., fp = 0.55f;" in Figure 3 (ii).

Some idea of the complication that would be caused by introducing explicit satisfaction of
this limit is evident in Figure 7. This figure shows, for a singly reinforced rectangular
section (f¢' = 25 MPa, fy = 400 MPa) and varying amounts of reinforcement, the variation
in the value of the following moments:

M the maximum, code-based value (¢, = 0.85, ¢, = 0.60) and the value of this
moment if ¢, = ¢, = 1.

Mgps, My the proportional limit for a flexural section that undergoes yield of the tension
reinforcement while the concrete responds linearly elastically

M, the moment value when the concrete attains its proportional limit for flexural
compression.

This figure clearly demonstrates that

i. M. is usually less than My, and at flexural yield (My) the concrete in flexural
compression can be expected to exceed its proportional limit. As is also well
known, the response of the concrete does not make much numerical difference to
the computed value of My here; My and M; (for ¢, = ¢, = 1) are comparable in
value.
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i, At service load, it is necessary that f, < 0.55f;' and, at all critical sections,

My, < My Ifit is assumed that M is indicative of the factored load level, i.c.,
Wi, and that the dead load and live loads are equal so that W¢/ Wy, = 1.375 (see
Figure 2), then it is evident that the concrete compression criterion for structural
serviceability could sometimes have a significant effect. The lower the specified
concrete strength, the more important this consideration and the greater the
influence that this design criterion will have on the relative values of M; and M;
and hence, er) and Wr.

Over the last twenty years—as the load factors on dead and live loads have been reduced
and as the use of high-tensile reinforcement has increased—the relative significance of the
behaviour of the concrete has increased. This issue should be addressed, as it can and
should have an impact on design. It is certainly a serviceability consideration that can and
will constrain the utilization of inelastic redistribution.

6.2 M orM
y r

Since the numerical value for My is much greater than the code-based value for maximum
moment, M, there is some confusion as to which value of moment to use as the operator for
serviceability, i.e., the moment value that identifies Wy;. It is conservative and perhaps
consistent to use My; however, there are probabilistic and pedagogical reasons for not doing
so. Theoretically, the probability of the load reaching the service load level is 100 per cent.
Moreover, numerical accuracy is more important under service loads than at the factored
load level, where safety is the principal objective. There is little reason to presuppose that
the various factors used for safety have any statistically consistent bearing on serviceability
considerations. Instead, each serviceability criterion needs to be defined and considered
within the appropriate statistical context. The use of My rather than M; would probably also
lead to a better understanding of the potential for inelastic redistribution and limit design
loads.
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7.

Conclusions

This paper has reviewed current Canadian design practice for reinforced concrete and
assessed the potential for properly using limit design procedures. The design code is seen
to be a very substantial obstacle. Changes in the code over the last 20 years have greatly
reduced the potential for limit design procedures.

The following situation now prevails:

i.

ii.

iii.

Inelastic response is explicitly used at the material and section levels of response,
but it is only indirectly used at the component and higher levels of response.
This practice may be numerically convenient but is not conceptually consistent.

The load factors for overload safety have been consistently reduced, with the
result that both the incentive and the potential for using inelasticity have shrunk.

Although the introduction of the material factors ¢, and ¢, and their specified
values may simplify the numerical calculation of a conservative value of
maximum moment, this approach has some serious drawbacks:

The value for M, is so low relative to My that the probability of a
structure ever actually experiencing any post-yield behaviour before the
factored design load is reached is extremely small.

The mechanics of response at or close to M; are a distortion and a fiction.
The strain distribution, if not impossible, represents an extremely
improbable situation.

Because the limiting coordinates, i.e., M; and ¢,, are the operating
unknowns for each critical section, we are developing designers whose
experience with reinforced concrete is based largely on a fairy tale. From
a pedagogical point of view there are serious drawbacks to using a
distortion to define the so-called balanced section, to evaluate the neutral
axis position and to provide a basis for calculation of inelastic ductility.
There must surely be a better way to develop a "feel” for concrete design.

From a quantitative point of view, the disparity between Wpymin and
WBnin is so great (i.e., the code ratio is so much greater than 1) that the
effort and ingenuity spent on minimizing the designer ratio (W . / W¢)
is disproportionate. It is comparable to a game in which the players and
their skills and equipment are far superior to the quality of the rules.
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Both the structural designer and the educator face a real dichotomy. It must be
acknowledged that many, if not most, problems with reinforced concrete buildings involve
serviceability—especially durability and longer-term performance. Much greater emphasis
needs to be placed on serviceability provisions. Pre-yield response should be computed
explicitly and relatively accurately. There is also a need to improve the design reserve
against poor performance at the service load level with regard to repeated loading, wear and
tear, deformation and durability. All these calculations entail linear elastic response and a
knowledge of the actual limits to this response.

A better understanding is also needed of the manner in which the structural system is
performing when the maximum design load is applied. If design procedures predicate that
the structure has not undergone flexural yield when the design load, Wr, is applied, then a
knowledge of the actual magnitude and mechanics of failure becomes superfluous. Taking
this point even further, one might even be tempted to ask why the codes bother with
ultimate-strength theory: we might be better off restricting design to pre-yield response. A
much better approach would be to address the non-linear, inelastic capabilities of reinforced
concrete in a more rational, conceptually consistent and comprehensive manner.
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REVIEW OF COARSE SOFTENING ANALYSIS OF FRAMED CONCRETE
STRUCTURES

By Peter LeP Darvall, Professor and Dean of Engineering, Monash
University, Clayton, Victoria, 3168, Australia

ABSTRACT

“Coarse” softening analysis of concrete structures relies on the primary
assumptions that softening occurs over a finite hinge length and that the moment curvature
or torque-twist relationship for any section may be closely described by a multi-linear
curve.  Results from several series of tests demonstrate that these are good
approximations. A hinge length of 0.75d is recommended for first draft computations for
flexural softening.

Singularity difficulties with stiffness coefficients may be eliminated by ensuring that
equilibrium states (eigenvectors) of the stiffness matrix for members with softening hinges
are consistent with the presumed stiffnesses. The direction dependency of hinge stiffness
must be taken into account. Resolution of the computational problems implies a reduced
equivalent hinge length ratio for small values of the softening or hardening parameter a (ie
in situations near perfect plasticity). There is also a problem of path dependency in
deformations involving the softening state. The critical softening parameter may be
determined for a hinge at any location in a framed structure.

In elastic-plastic softening frames a steeper softening slope reduces both the number
of hinges formed before collapse and the collapse load. When axial load (stability) effects
are included, the absolute values of critical softening parameters are reduced. Shakedown
loads may be severely reduced by the presence of significant residual moments and only
very slight softening. For unidirectional dynamic loads there is a critical softening value
for the resistance function of the structure which depends on the nature of the dynamic
load. For reversible loads the softening hysteretic behavior of each hinge is reflected in the
overall response and a critical ground excitation frequency may be identified for a given
softening slope and peak load/yield load.

INTRODUCTION

In recent years there has been a good deal of attention paid to ways of including the
strain-softening behavior of concrete in analysis of the high deformation response of
concrete structures. Softening is most evident for steel-concrete composite beams, over
reinforced beams, axially loaded or prestressed members (particularly short columns) and
is probably common at beam-column joints in reinforced concrete frames. Ideally, it
should be possible to predict the full-range response, up to and beyond the maximum load
capacity until considerable damage has occurred, for structures under all kinds of loading,
based on the material properties and structure geometry. Softening research has taken
three main lines:
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. Laboratory investigation of softening in simple structures.
. Mathematical modelling of strain softening concrete and simple structures.
. Examination of structural implications using certain simplifying assumptions drawn

from laboratory studies.

Some ingenious mathematical models for softening have been presented, including
the imbricate model, the crack band model, the fictitious crack model, continuum damage
mechanics with layered finite elements and the self adaptive model (e.g. 1-5, 15, 17, 25).
Difficulties have been encountered with strain localisation instabilities and erratic
convergence of finite element solutions, reflecting the commonly held view that strain
softening is inadmissible in conventional continuum mechanics. Nevertheless, good
agreement of predictions from mathematical models with results from tests on simple
softening structures has been possible (4).

The author and his co-workers have concentrated on laboratory investigations to
provide a better understanding of the overall behavior of softening regions of flexural or
torsional elements (softening hinges), and on the use of justifiable approximations to make
tractable the analysis of framed concrete structures in the softening range, in order to reveal
the implications of softening. In these “coarse” methods of analysis for softening, the
primary assumptions are that softening occurs over a finite hinge length, and that the
moment curvature or torque-twist relationship for any section may be closely described by
a multi-linear curve such as shown in Fig. 1.

i first
A plastic softening

(oF] El

MorT

second
. softening
unloading a, El

reloading

Figure 1. Model for Moment-Curvature or Torque-Twist
SOFTENING HINGE CHARACTERISTICS

Several series of tests have been conducted in displacement control to advanced
curvatures to determine the hinge parameters of plastic plateau length (rotation capacity),
hinge length and softening slope of reinforced concrete beams. Mendis (23) tested 19
rectangular beams of overall depth, D, of 18 cm and varying spans under both single
midspan loading and two-point symmetrical loading, to examine hinges in varying and
constant:-momentregionsz» Tse(31)tested:26,simply supported and 4 two-span rectangular
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beams with D ranging from 23 to 35 cm using both single point and double point loading.
Sanjayan (28) examined 9 beams of depth 26 cm with column stubs under extreme
reversible loading for softening in both positive and negative bending. Foo (14) tested 25
beams of 30 cm depth with varying degrees of prestressing. Finally, Lee (19) tested 23
rectangular beams and 4 T and L beams into the softening range in torsion.

Rows or arrays of specially designed inclinometers were used to measure the hinge
characteristics in detail. Fig. 2 is a photograph of a typical flexural hinge in a constant
moment region, and a shear-crack hinge or wedge hinge in a region of shear (moment
gradient).  Fig. 3 shows for one of the beams tested by Foo how the rotation
measurements near the mid-span load point during softening indicate clearly the hinge
length into which rotation is concentrated. For a flexural hinge this hinge length varies
little with depth. For a wedge hinge the hinge length result depends on the depth at which
rotations are measured. Fig. 4 shows a typical moment-curvature curve for a hinge region
and Fig. 5 shows a typical torque-twist curve. (At the constant displacement rate applied,
the duration of these tests was approximately 30 minutes.) Straight lines have been fitted
to the experimental points. These lines define the extent of the plastic plateau, and the
softening slope.

Figure 2. Flexural and Shear-Crack Hinges

Rotation Capacity

This parameter has been the subject of much research for over three decades. The
research on softening as described led to values for ¢y and ¢y, the curvatures at the
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beginning and end of the plastic region. Empirical expressions for ¢, were derived. The
beam variables of tension and compression reinforcement ratio, binding ratio and effective

0'070 LN R B | LR B A § 1 LI | T LELEL L} T 1 T T T L L) ¥
- ' Y65 ' o4
C — ]
] [T ==
o 0035 g~ Q| prestressedn/, ’
O L " 1 ] tehdon / N
o - a4 , ]
~ - 3v12 a 2/ E
o o F ]
s X v ]
= C x K ]
§ - 5 0:9343My //‘ ]
- o — - [« | 7]
© TOORETTT TogzaMy s =
b — & T -
- 0.9051My __/ ]
[ m —8 -0 T 2p= 208mm ]
__0.070*' T T s TR I B U A A B
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Distance from Mid—span (m)
Figure 3. Measurement of Hinge Length for Beam S5, Foo (14)
100 T T
Rot.Cap.=0.014
" BDL ba
-~ 80 A2 ASE -
E
=
X
4 60 -
-
[ R6/7Q,
g /
4 —
s * R
=
20 -
El=5.48
0 1 ]
0 1 2 3

Curvature (x10* /mm)

Figure 4. Experimental Moment-Curvature for Hinge of Beam 12, Tse (31)



35

22 T T T T T T T [ T T T 1
20 o test _
linear stage
18 -
~ 1 6 —
£
Z 14 -
< :
12 |- 4Y12 . -
g .
10 -
o o o~
ul
o 8 & > -
|_
6 .
4 | _
172 Y1290
2 -
) WS TS NN W NN SN SR W AN SN N S

0.0 0.1 0.2 0.3
Unit Twist (rad/m)

Figure 5. Experimental Torque-Unit Twist Curve for Hinge of Beam 10, Lee (19)

depth/span ratio affect the rotation capacity in well-known ways. The plastic rotation
capacity for torsional members was minimal, with beams entering into relatively severe
softening after the “cracked-elastic” stage.

Hinge Length

Empirical expressions for hinge length £ p to one side of a maximum moment point
show dependence on the same major variables: reinforcement percentages and shear-span
ratio. The hinge length varied between 0.4d and 1.1d for flexural members, where d is the
effective depth of a cross-section, and between 0.36P; and 0.57 P for torsional members,
where P is the perimeter of the gross concrete section. For flexural members an average
value for hinge length of 0.75d could be assumed for “first-draft” computations. Greater
precision from predictive methods is hardly justified at present, though it would be prudent
to use upper and lower bound values. Once the hinge length has become clear at the end
of the plastic plateau, it varies little with further deformation even in reversible loading.
Fig. 3 exemplifies this. The hinge length decreases with increasing degree of prestress.

Softening Slope

For flexural members, the initial softening slope was in almost all cases less than
1% of the elastic (loading) slope. The second distinct softening slope was of the order of
3% - 6% of the elastic slope. The softening slope is steeper with increasing reinforcing
index, axial load or prestress, and is shallower for increased binding reinforcement.

For torsional members, the first softening slope is often steeper than the second
softening slope, both being considerably greater than for flexural members. The major
(second) softening slope is generally in the range of 15% - 75% of the cracked elastic
slope.
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FOUNDATIONS OF COARSE ANALYSIS OF SOFTENING OF
STRUCTURES

Stiffness Matrix

In previous papers (11, 12) it was shown how the assumption of a finite hinge
length over which softening occurred, while the adjacent region unloaded elastically,
allowed the determination of stiffness coefficients for flexural members with softening
hinges. Similarly, stability functions may be derived for members with axial load and
softening hinges (23, 24). In turn, the conventional direct stiffness method then becomes
possible for the elastic-plastic-softening analysis of plane frames. As has been shown (28)
computational difficulties similar to those experienced by others may be encountered when
stiffness coefficients including softening are considered. Resolution of the problem is
made possible by reference to an appropriate physical model.

Sanjayan (28) considered in detail the stiffness coefficients for an element with a
softening hinge at one end. Fig. 6 shows the basis for the computation of coefficients for
a hinge length £ p (hinge length ratio h; = £ p/L), for one element displacement. Actions,
Aj, are related to displacements, D, by

A1 EI S S D1
(1]

A2 L SIZ S22 D2

a2 L,El i

St +

Y
{/
¢ (a-ve)

Figure 6. Basis for Determination of Stiffness Coefficients
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Graphs of the element stiffness coefficients S;j are shown in Fig. 7(a) for hj = 0.2
and varying softening parameter,a. Whena=1S11=S22=4and Sj2=2. Whena >1,
the case is one of a stiffening section (gusset) in the hinge length. When a < 0, softening
is occurring. Fig. 7(a) shows that the coefficients become singular at agy = -1.4348, the
critical softening parameter for the fixed ended element with a softening length at one end
(see next section). For a < agp, the structure is unstable. An enlargement of the graphs
near a = 0 in Fig. 7(b) shows another singularity at ag; = -0.0027.

The problem is one of inadmissible equilibrium states (20), where the direction
dependency of hinge stiffness is not taken into account. For deformation from point P in
Fig. 8, PQ and PR are valid paths with softening and unloading stiffness respectively.
Path PS with softening stiffness is inadmissible. If an eigenvector of the stiffness matrix
is a displacement shape which within the hinge length contradicts the assumed stiffnesses,
a false indication of instability, a negative eigenvalue, is obtained. For concrete, path PR
represents closing cracks.

MA
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Figure 8. Direction Dependency of Hinge Stiffness

The singularity effect is most pronounced for Sy, so Sanjayan (28) studied
equivalent lumped stiffness models such as shown in Fig. 9, for displacements D; = 0 and
Dj = 1, for small negative and positive values of a. Table 1 shows the results for all
sixteen possible combinations of spring stiffness, when a = -0.05, and assuming h; = 0.2.
From the 9 admissible equilibrium states in Table 1, the equilibrium state containing the
least total spring rotation is chosen, and is shown in Fig. 9. One fourth of the hinge
region is unloading. The length of the softening hinge region is hil. = 3/4hjL and the
element stiffness matrix would have to be adjusted accordingly for hj = 0.15. For < acr,
the critical softening parameter, there are no admissible equilibrium states.

By repeating this examination for different small values of a, the equivalent
admissible hinge length ratio near the singularity point was found to be as shown in Fig.
7(c). When admissible hinge length ratios are used, the singularities in the stiffness
coefficients are avoided. Likewise, the distributed stiffness model may be analysed for
admissible equilibrium states and the permissible hinge length ratio is shown in Fig. 7(d).
The presumption of a point hinge for plasticity, and a finite length hinge for softening, has
a necessary transition stage for stable computations when a is small. Subroutines in which
stiffness coefficients are computed must contain checks for admissibility and adjustments
where necessary.
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Mendis (23) encountered a problem with negative eigenvalues in a stable structure
when considering softening hinges on both sides of a load point. The problem may be
eliminated by moving the joint to one end of the softening region and applying the
appropriate fixed end moments from the load. Alternatively the eigenvectors may be
checked for admissibility with the assumed flexural rigidities and appropriate adjustments
made.

Path Dependency

Fig. 10 shows a member with a softening hinge for which displacements Dy = 1
and Dy = -1 are prescribed. Three cases are considered:

Case 1: Dj =1and Dy =-1 are applied simultaneously.
Case 2: Dj = 1is applied first, followed by Dy = -1.
Case 3: Dj =-1is applied first, followed by D; = 1.

The three paths for the hinge region are shown in Fig, 10.
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Figure 10. Path Dependency in Softening Analysis

The example demonstrates that though the total end displacements are identical, the
final state of the hinge in the moment-curvature diagram depends on the deformation path
followed. In the analysis of framed structures, the end displacements of a member during
each step are assumed to happen simultaneously as in path 1. This topic remains for
further research.

Critical Softening

Critical softening is that value of the softening parameter, a, for a hinge at which the
structure as a whole cannot sustain increased load(s), however redundant the structure may
still be. Critical softening parameters have previously been computed (by hand) for two-
span beams and single bay portal frames (6,7). Fig. 11 indicates the critical softening
parameter for the first formed hinge inaportal frame with fixed-end columns. In general,
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each member of an indeterminate structure has a “soft point” where the critical softening
parameter has a member minimum. The critical softening parameter of a hinge is reduced
if plasticity or softening exists elsewhere, or if real hinges are introduced. The parameter
is approximately proportional to 1/m = £p/L, so that means whereby hinge lengths are
increased will lead to greater reserves of overall strength. For more complex structures,
computer structural analysis based on stiffness matrices for elements with softening hinges
may be used to determine the critical softening parameter at any required hinge point (12).
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Fig. 12 shows the basis for the calculation of the critical softening parameter in
torsion at the wall hinge of a right angle balcony beam, assuming behavior is otherwise
elastic in bending and torsion (19). For neutral equilibrium at critical softening, APy =0,
and the three equilibrium equations are:

AT = AM’, AM = AT’ and AP = AP’

The three compatibility equations are:

@ Rotation at C due to incremental twist of member AC is equal to the rotation due to
incremental curvature of member BC

(ii)  Rotation at C due to incremental twist of member BC is equal to the rotation due to
incremental curvature of member AC

(i)  Vertical deflections at C calculated from the incremental curvatures of members BC
and AC are equal.

Using normal moment-area methods we find the critical value of a, the softening parameter
as

a = — p =
cr
El'!
3123(1-‘-&%]
K
(;—112 1- z 1 ”1“’,,
41+ L2 (3 +3)-38 )

Gk |1 2 T

Though the EL shaped balcony beam is not a particularly realistic example, the
method for computation of acr has been illustrated. For the more general case of a curved

balcony beam, a similar equation could be derived where the constants in the equation for
acr would become integrals.

A similar method can be used to determine the acr values for other structures.
However, the procedure will be very tedious when the structure has a high degree of
statical indeterminacy. The solutions obtained for various critical softening parameters
depend on the location of hinges and the sequence in which they form.

SOME STRUCTURAL IMPLICATIONS OF SOFTENING IN ELASTIC-
PLASTIC-SOFTENING FRAMES

Static Loads

Computer program PAWS (“Plastic Analysis with Softening”) was developed from
ULARC (33), employing stiffness matrices for elements with softening hinges as described
(12, 23). In this analysis the total response of a structure with plastic-softening hinges to
increasing load will be a series of linear stages, each of which is terminated by any of the
following;:

. any hinge location reaching the end of the plastic range and becoming plastic;
. any hinge reaching the end of its plastic capacity and beginning to soften (or harden);
. any hinge unloading elastically from the plastic or softening range.
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One case of particular interest is that of critical softening of the first hinge, as
defined earlier. Program PAWS may be used to find the critical softening parameter for
any hinge location in a frame structure by trial and error.

Fig. 13 shows the sway response of a two-storey frame with vertical loads applied
and then horizontal loads increased to collapse. Various values of softening parameter and
rotation capacity are used.

The critical softening parameter for the first formed hinge in the beam at node 12
was found to be -0.0824 (m = 15 for the whole beam). When the stiffening effect of the
upper storey is removed, acr = -0.0625 for this hinge, confirming the theoretical value
obtained from equations presented previously (6,7).

It can readily be seen from Fig. 13 how a steeper softening slope reduces both the
number of hinges formed before collapse and the collapse load. An increase in rotation
capacity before softening has the opposite effects. The order of hinge formation may be
changed by changing the softening slope [see curves (ii) and (iii) of Fig. 13].

The computer program will also provide results for the post-collapse behavior while
deformation is still increasing, until near the snapback phase.

The presence of significant axial force in a softening member raises the possibility
of double or interactive instability, ie instability from large axial forces as well as from
softening.  Elastic-plastic analysis for the non-linear effects of axial force and joint
displacements was extended to include softening through the use of stability functions and
modification of the element-stiffness matrix for the P-A effect. The computer program
SOAPS (“Second Order Analysis with Plasticity and Softening”) was developed and
applied to various frame examples (23, 24) to assess the effects of stability and/or
softening.

When stability is included, an elastic-plastic or elastic-plastic-softening frame may
exhibit an entirely different pattern of hinge formation. The absolute values of critical
softening parameters for hinges are reduced, and the number of hinges formed before
collapse may also be less.

Repeated Loads

The computation of the response of reinforced concrete framed structures under
severe repeated unidirectional loads to shakedown or incremental collapse involves
consideration of the softening portion of M-¢ curves unless extended plasticity can be
guaranteed at all relevant hinge locations. In this analysis suitable assumptions, verified
by tests, must be made on the unloading and reloading path from the softening curve (Fig.
1). The effect of softening on shakedown loads may be quite dramatic if significant
unfavourable residual moments (such as from differential settlement) are present (9, 10).
For frames, softening of only 1% (of the elastic stiffness, a = -0.01) may lead to
shakedown loads which are very little more than the first yield load for some load
combinations (9).



45

I i 1 1 i T T
HF1,2

1.5 — |

1.4 — —
Sway HS5,6
load
factor

1.3 HF5,6 —

(i) elastic—plastic
(i)—(iv) elastic—plastic—softening
(i) a=-0.02,rot.cap.=0.001
(i) 0=—0.04, " =T
(v) a=-0.0823 " *
HF5,6 (v) a=—0.0824, " "
(vi) a=-0.0824,rot.cap.=0
HF10,12 hinge forms, member 10

1.2

1.1

node 12 |
HS hinge softens
0,8
§,. O ®-® m=6
1.0 g2 @-Q m=3
) 8|, O-6 m2
4

I 1 i | i
15 20 25 30 35 40 45 50

Sway Deflection x 103(m)

Figure 13. Load-Sway Deflection for Softening Frame Loaded to Collapse

Dynamic Loads

Computation of the response of concrete frame structures to dynamic loads causing
responses near collapse requires consideration of softening in addition to plasticity and
hysteresis. The nature of the softening part of the resistance function of a concrete
structure may be found using the softening characteristics of the most highly stressed
regions (hinges). For simple structures under unidirectional dynamic loading a critical
softening parameter at which collapse will occur may be identified and depends on the
severity of the applied load as represented by the ratio of maximum applied force to
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maximum resistance (or by energy of impulse to maximum elastic strain energy), on the
plastic plateau length (ductility), on any limit to the softening region, and on duration of
load in the case of a rectangular load function. Conversely, for a given softening slope, a
critical severity of load, critical plateau length, or critical duration of load may be identified.

A steeper softening slope increases the maximum displacement for a given dynamic
load, increases the time to maximum displacement, and decreases the amplitude of residual
elastic vibration. For critical softening, there is no residual vibration.

The criterion for structural response to enter the softening range may be expressed
in terms of severity of load and length of plastic plateau (ductility).

For reversible dynamic loads the hysteretic behavior of softening hinges (28) is
reflected in the overall response of the structure (21, 26-29). Fig. 14 provides some
information on the response of the frame of Fig. 13, with vertical loads only, to the El
Centro 1940 SOOE ground motion, multiplied by a factor A = 1.39. The primary hinge
properties are shown, together with the yield status of post-elastic regions at various times
and the progressive moment-curvature relationship for the softening hinge at node 12. By
varying the hinge parameters and the factor A it was found that when the maximum
curvature was limited to a specified value the maximum A was sensitive to the softening
slope. Since the softening slope is steeper for members with significant axial load (eg
prestressed members), this sensitivity is of particular importance in these cases. Softening
demands significantly more ductility for the same load factor when compared to plastic
behavior.

For softening frames under regular (sinusoidal) loading, a critical ground excitation
frequency may be identified for a given softening slope and peak load/yield load.
Conversely, for a given excitation frequency and load severity, there is a critical softening
slope. The regular ground motions of the great Mexican earthquake of 1985 appear to
have revealed this behavior involved in the collapse of many buildings (22).

CONCLUSIONS

1. It is appropriate to consider the softening of concrete structures at different levels of
mathematical sophistication. “Coarse” methods of analysis are based on the
primary assumptions of a finite hinge length and a multi-linear moment curvature
relationship.

2. Series of tests indicate that these assumptions are reasonable in many situations and

should lead to useful results. Different values for hinge length and softening slope
may be used to find bounds for the response of softening structures.

3. Computational difficulties with stiffness coefficients for elements with softening
regions may be overcome by reference to appropriate physical models. Admissible
equilibrium states for small values of the softening parameter may require a reduced
hinge length in computations.

4. The matter of path dependency in the softening region is yet to be properly
resolved.
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10.

A critical softening parameter is associated with every hinge location in a softening
structure.

Computer programs such as PAWS and SOAPS employing stiffness matrices for
softening elements are useful tools to reveal implications of structural softening.

A steeper softening slope reduces both the numbers of hinges before collapse and
the collapse load.

Quite small softening parameters may lead to large reductions in static collapse and
shakedown loads in indeterminate beams and frames, especially when unfavourable
residual moments are present.

Stability functions for softening elements have been derived and allow consideration
of double (material and geometrical) instability. The inclusion of stability effects
reduces the critical softening parameter for any hinge, and may also reduce the
number of hinges formed before collapse. It may also lead to a different order of
hinge formation and large reductions in collapse load.

For dynamic loads, the resistance function for a framed structure may be derived
from the hysteretic behavior of its softening elements. For any type of excitation,
critical softening parameters may be identified and for specified softening
characteristics a critical excitation frequency exists. The introduction of softening
in the hysteretic behavior of hinges is as significant as the introduction of stiffness
degradation as far as the maximum response of a structure is concerned.
Consideration of softening should be an essential part of inelastic dynamic analysis.
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Introduction

In the design of concrete structures, the criteria of strength
and serviceability must be met. It is of equal importance that a
structure be economical to construct and maintain., Current design
codes require strength design, supplemented by checks for service-
ability.

For the design of continuous concrete structures, most design
codes prescribe an elastic analysis which is based on a constant EI
for prismatic members. Such analysis may be followed by a limited
amount of moment redistribution.

However, flexural cracking of the concrete members results in a
drastic change of the flexural stiffnesses which are no longer
constant along a member’s length. For this reason the actual moment
distribution often differs considerably from that calculated by a
linear elastic analysis. To predict the actual distribution of the
internal forces, tension stiffening must be incorporated so that the
varied stiffness along a member due to cracking is properly modelled.
Since the moment distribution after flexural cracking is largely
governed by the stiffness after cracking, substantial redistribution
of moments is possible.

The are several advantages in designing for a redistribution of

moments.

(1) Less reinforcing steel is placed in the negative moment zones,
thus reducing the magnitude of the internal compression force.
This is especially beneficial for narrow webs of T-sections.

(2) Reduction of congestion of bars over supports of continuous
T-beams.

(3) Savings of reinforcement as there is no need to design for the
full moments of the moment envelope obtained for different
loading patterns.

51

D. E. Grierson et al. (eds.), Progress in Structural Engineering, 51-70.
© 1991 Kluwer Academic Publishers.



52

One argument against high amounts of moment redistribution is
that steel stresses may become excessive at service load which may
lead to wide cracks. However, the literature on tests that were
properly designed for moment redistribution, does not confirm this
belief. Many examples may be cited in which high percentages of
moment redistribution occurred due to flexural cracking and without
excessive steel stresses and crack widths at service loads. For
example, Macchi (1965), Dilger (1966) Bachmann (1970), Taerwe and
Espion (1989).

An extensive review of the available literature (Cohn 1979)
reveals the factors which are important for successful redistribution
of moments., It is clear that the most important parameter is the
rotation capacity of critical sections which depends primarily on the
reinforcement ratio ((p-p') and on the concrete strength. Dilger
(1966, 1967), Bachmann (1970), and Langer (1987) recommend that the
calculation of the ultimate rotational capacity should be divided into
two cases. First, when only flexural cracks develop and second, when
both flexural and shear cracks develop. The former is typified by
small plastic zones which result in small ultimate rotations. The
latter is associated with large plastic zones and large rotations.
Once shear cracking has occurred the force in the diagonal compression
strut results in a decrease in the internal compression force and an
increase in the internal tension force at each section, except at
points of maximum moment. The increase of the tension force is
dependent on the inclination of the compression strut. This effect is
more commonly referred to as the shift in the tension force. After
yielding of the longitudinal
tensile reinforcement the shift
in the tension force increases

the inelastic zone, thus * P
increasing the rotational ]
capacity as shown in Fig. 1. y —
a ' a
Other parameters that are [ !

important for large moment 2 m

X . : . T- M BEFORE SHEAR
redistribution to be achieved & z CRACKING
include adequate shear resist- " Ts—?—ﬂ%"
ance at critical sections and y AFTER SHEAR CRACKING
proper anchorage lengths for x
longitudinal reinforcement. » L
Several examples may be cited ¥ Lp '—p‘|
where premature failure occurred E BEAM WITHORX ~77" Lp = PLASTIC LENGTH
due to inadequate shear resist- Z |SHEAR CRACKS ! ¥p = PLASTIC
ance. For example, Corley 3 { ‘ % CURVATURE
(1966), Hawkins et al (1965), : PLASTIC ROTATION:
Langer (1987). Dilger et al i e 8= [ ¥pdx

(1967) recommended extending

part of the longitudinal rein-

forcement 'in the negative moment Fig. 1 Plastic rotation for beam
zone past the elastic point of with and without shear cracks
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contraflexure no matter what the position of the point of
contraflexure after moment redistribution. The anchorage length must
of course include any shift in the tension force due to shear.

Moment redistribution in current design codes

A survey of current design codes reveals that design codes which
allow only small amounts of redistribution are cautious and suspicious
of nonlinear methods of analysis and possess a strong reluctance to
stray from the classic linear analysis. Hopefully it is apparent that
the actual load history of a member can only be achieved through a
nonlinear analysis. Therefore it should not be surprising to find
that the more progressive and informative design codes allow higher
amounts of moment redistribution and recommend a variety of analysis
methods.

For example, the current Japanese standard (1986) allows only 15%

moment redistribution and states that ".. nonlinear structural
analyses are reasonable ones, but they remain unestablished as
generalized design theories....meanwhile, there exists a general store

of experience and established reliability in linear analysis, which
may be used for design."

An example of a more progressive attitude in the design of
concrete structures may be found in the draft of the 1990 CEB Model
Code. Three methods of analysis are recommended to determine the
effect of design loads:

(a) linear analysis followed by limited redistribution
(b) nonlinear analysis
(c) plastic analysis

In determining an appropriate amount of redistribution to impose
on the linear solution, nonlinear effects due to cracking and the
importance of properly designing for shear and anchorage are stressed.

A redistribution of 30% can result after cracking owing to the
reduction of stiffness due to cracking between zones in the span and
over the supports.

In principle, all consequences of the assumed redistribution and
of the possible dispersion should be taken into account in the
calculation at all stages of the checking procedure.

These consequences concern shear, the anchorage and cracking. In
particular, the lengths of the reinforcing bars must be sufficiently
long to prevent any other section from becoming critical."

A summary of the limitations imposed by several current design
codes with respect to moment redistribution is presented. The
reduction coefficient Rm is used to make comparisons between codes.
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I Japan Standard Specification for Design and Construction of
Concrete Structures - 1986, Part 1 (Design)

on!
R 2 0.85 p-p' £ 0.5 Py

where p = ratio of tension reinforcement
’

p' = ratio of compression reinforcement
Py = balanced reinforcement ratio
II German DIN 1045-78
R > 0.85
m >
III American ACI 318-89
-p!
R =0.8+0.2 &) ; ,-p' <050
m p = b
b
IV Canadian CSA A23.3-M84

R = 0.7 +0.5 (c/d) > 0.8

where c¢/d = neutral axis depth ratio
v British BS 8110:85

Reinforced Concrete Rm =0.4+4+c/d > 0.7

v

Prestressed Concrete R = 0.5+ c/d >0.8

In structures over four stories in height in which the structural
frame provides the lateral stability, the reduction in moment should
be restricted to 10% - ie: Rm > 0.9

VI First Draft to the 1990 CEB Model Code
Rm = 0.44 + 1.25 (c/4d) fé = 12 - 35 MPa
Rm = 0.56 + 1.25 (c¢/d) fé =40 - 60 MPa

For continuous beams and non-sway frames
R >0.70

m =

For sway frames

R > 0.90
m. 2
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VII Danish DS 411-86

R >0.34 w < w
m = b
where w = reinforcement index
Wy = reinforcement index under balanced condition
The most liberal of the above codes is the Danish standard which
allows a maximum of 66 percent moment redistribution. At first this
may seem a little excessive, however it must be remembered that the
ratio of service to ultimate load is not constant from code to code.
In a recent paper Taerwe and
Espion, (1989) reported laboratory
tests which achieved moment
redistributions of plus and minus
60 percent without yield of

~40

Rem
8
1

CEB 90, f( = 40- 60 MPa

CEB 90, f¢ = 12-35 MPa
T — —30
\ \ BS 8110 REINFORCED
CONCRETE

1

reinforcement at service load. N NN

Time dependent effects caused 2., \_\.,_ (58 810 CRReReTE 20
yield, however the authors reported \7\\\\ .

that this does not automatically ACI 38-89

\

produce large deformations and

MOMENT REDUCTION COEFFICIENT,
(=
©
-~
-

crack widths since compatibility of \

forces and deformations must always A | 1\\ |

be maintained at each section. It O 02 03 o4 05 os o
should be remembered that in most <. or PP
situations the maximum redistri- ¢ Po

bution required 1lies between 25
and 30 percent so that span and
support sections contain equal
amounts of reinforcement.

Fig. 2 Moment redistribution vs.
c/d or (p—p')/pb for different
design codes

A comparison of the different codes is shown in Fig. 2.

Analytical Model

Having determined the important factors for moment
redistribution, an analytical method must be developed to include
them. It is interesting to note that many of the methods that have
been developed for the non-linear analysis of continuous concrete
structures totally ignore the effects of shear and the shift in the
tension force. To ignore the effects of shear leads to correct
results only for long slender members, in which no shear cracking
occurs; otherwise unrealistic results are produced.

In nonlinear analysis problems an iterative solution is most
often used. For each iteration a linear displacement analysis is
performed.

In the present investigation a secant modulus method is used to
achieve convergence. The structure is considered to be an assemblage

MOMENT REDISTRIBUTION, R (%)
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of prismatic beam elements. Each element is subdivided into a number
of segments for which a flexural stiffness, EI, and a shear stiffness,
GA_, are determined. From the segment stiffnesses an equivalent
stiffness is determined for each element. Details are provided in
Sveinson (1989).

It has been well-documented in the literature that the flexural
behaviour of reinforced and prestressed concrete members with flexural
cracks may be accurately modelled by wusing a moment-curvature
relationship. The flexural stiffness of each segment is determined as
the slope of the moment-curvature relationship

M
[1] EL -

Unlike structural steel, the curvature along a concrete member
can be subject to sizeable variations due to cracking. Therefore, in
analytical solutions it is assumed that an average value of curvature
is assigned to a finite length of the member. Within each finite
length, the following assumptions are made:

(1) Plane sections remain plane.

(2) Near perfect bond exists between concrete and reinforcement

(3) Axial force is constant.

(4) Mathematical models chosen for the stress-strain
relationship of concrete and steel are representative of the
material behavior, including tension stiffening.

For this study it is assumed that the magnitude of the axial
force is zero. However, in prestressed concrete and compression
members axial forces must be considered.

Material behavior

For the stress-strain relationship of the concrete in compress-
ion, Hognestad’'s (1951) well-known parabolic-straight line relation-
ship is assumed (Fig. 3a).

For the ultimate concrete compression strain, €eu the relation-
ship proposed by Dilger (1967) is based on the work of Rusch and
Stockl (1963) and on test results of The University of Calgary:

f' (MPa) £’ (MPa)

-3
35 + psks(S'S ) 35

)] 10

(2] €eu ™ [4.5 -

ks is a stirrup distribution coefficient relating the width of the

section and the stirrup spacing, defined by

2
(b - s/2)

s b2
w



For concrete in tension, a
linear relationship is assumed
until first cracking, followed
by a descending branch in order
to model the effects of tension
stiffening (Fig. 3(b)). 1In this
figure is the tensile
strength of the concrete and k
is a factor which is assumed to
be 1.0 in the present analysis.

The stress-strain relation-
ship for mild steel is modelled
as shown in Fig. 4(a), after
Park and Paulay, 1975).

For cold rolled reinforcing bars
or prestressing  steel the
expression by Dilger (1966) is
adopted, see Fig. 4(b):

f f m
€ =—=—+40.002 (+— )
s Es f0 9

(4]

where

In (ep) - In(0.002)
In(1.1)

[5] m =

Shear stiffness

After diagonal tension
cracking the shear stiffness,
GA_, is reduced similar to the
flexural stiffness, EI. Dilger
(1967) showed that an accurate
prediction of the shear strain
of a web with shear cracks, may
be derived from the truss model
of Fig. 5 as follows:

-1
[6] v = tan (esv

The strain in the vertical stirrup, €
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To determine the strain in the diagonal compression strut, e _,
s . R c
the stress-strain relationship for concrete in compression may be
used. The stress and strain in the compression strut become,
respectively

(8] £, =" =
d b _.d + sinfecosd i
wowv N
VERTICAL y
STIRRUP 7
// \\
fd // otTmmessnon e \
191 ey =eo (11 ()] e \
2max Sl i~
N\ \—Exdy !
£, ax 1S the compressive strength r\\smede’e T
of the diagonal strut (see Eq. 12). \\ o
The shear stiffness may now be \\ b

determined from Hooke'’s law

Fig. 5 Truss model for shear

[10] GAr = deformation

i<

The shear strain vy and the resulting shear deformation is
normally small and therefore neglected. However, in beams subjected
to high shear stresses it may be significant as demonstrated later.

Angle of the compression strut

Several proposals have been put forward for determining the angle of
the compression strut, §. Most theories tend to assume that the value
of § remains constant throughout the load history of the section.
Many design codes recommend a simplified procedure where § = 45°.
Collins and Mitchell (1980) set forth a series of equations for a more
accurate estimate of the angle f. Based on their Compression Field
Theory the angle § of the compression strut is determined by

(rn/fé)35

[11] § =10 + mx)

where € is the longitudinal tensile strain at mid-depth and

[12] T -

Equations (11) and (12) may be solved interactively until the

angle § is found. The compressive strength in the strut, f2max’ may
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be determined by
f'
c

f2max- 0.80 + 170 €

(13]
where € is the principal tensile strain defined as

€ + 0.002
[14] €, = € + —————
1 X tan2 0

For practical situations the value of €, may be taken as 0.002.

Modelling the shift of the tension force diagram

The shift in the tension force due to shear cracking has the
effect of increasing the plastic length and thus the plastic rotation.

The effect of the shift is incorporated in the analysis through
an adjusted stiffness. Using the truss analogy to model the behaviour
after diagonal tension cracking the force in the compression strut is
associated with axial force N_ which depends on the shear force V and
the angle § (see Fig. 6): v

v FORCES DUE TO INTERNAL STRAINS
EXTERNAL LOADS FORCES 3

o] € ¢

F ; 4_20,.“1.-_3‘1. =
7 0y v A.E°-4 L
b T R

—yT. M N N
z €y | A

(15]

Nv = tan 4

Balancing the axial force,
N_ results in an increase in M(
tension force by N /2 and a
decrease in compression force by
N /2 at a section. However, it
is important to note that the
internal moment remains the
same.

Fig. 6 Internal forces and strains
in cross-section with shear cracks

In the present method the shift is accounted for in the following
manner. First, the flexural rigidity, EI, is determined from the
moment-curvature relationship. Then the steel strain e¢_ and concrete
strain €, at the level of centroids of the tension and compression
zone are calculated, as well as the magnitude of the resultant comp-
ression force XC and the total tension force ZT. The force 3=C
includes compression steel, if any, and IT includes the force in the
concrete in tension (c.f. Fig. 4b). With this information the follow-
ing axial stiffnesses, EA in tension and compression are determined:

(16] (EA)T - ZT/es
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[17] (EA); = SC/e_

C

The change N_/2 in the compression and tension zones then leads to the
changes in strain at the level of the respective centroids:

N
N4
[18] Aes - 2—@‘;
NV
[19] Aec = EZEK$E_—

These strain changes result in the new curvature

[20] boow =

new

Nll—-‘

[(eS + Aes) + (ec - Aec)]

and a new flexural rigidity

[21] (EI)new - —E—E———

new

The term z in Eq. 20 is the internal lever arm (see Fig. 6). As
alluded to earlier the increase in the tension force considerably
increases the rotational capacity of a member and thus contributes to
the moment redistribution.

Analysis

In the displacement method of analysis the actions, (A}, at a
sections are determined by,

{22) (A) = (A} + [Au]-(6)

where, (Ar) = actions occurring in a fully restrained situation
[Au] = actions occurring due to a unit displacement
{6§) = actual displacements

The actions [A ] are directly related to the flexural stiffness,
EI, while the displgbements, {6), are related inversely. The adjusted
stiffness, (EI) after shear cracking, is smaller in magnitude than
the original vatie. Thus, the displacements are increased and the
actions [Au] and {A) are affected accordingly.

It is well known that in regions of maximum moment, the angle ¢
graduallypchangespfrompthepvaluegealculated by Eq. 11, to § = 90° at
the point of maximum moment. To properly model the change in angle ¢
in the vicinity of max M (eg. at|intermediate supports) the angles ¢
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in the segments adjacent to the

Q Q a a
point of max M are assumed as ) et 8ot L
shown in Fig. 7. INWRYYASE ' ad
d | l ~ \ / s ] 92"0"-. 3a
B A A A 2d
The above mentioned theor- | ] %{mﬁﬂ% | 8y tart 50
etical considerations have been 2d
SUPPORT 40 FROMEQ 1t

coded in Fortran 77 to produce
the computer program NONARCS
(NONlinear Analysis of Rein- Fig. 7 Angle 0 in the vicinity of
forced Concrete Structures). points of maximum M

Comparison of nonlinear analysis with test results

To demonstrate the validity

. 300
of the proposed analytical H2 Ity
method, a series of test beams (,[ ; O @ 245 B @07 300 T
were analyzed. The two two-span i

. —{
reinforced concrete beams 1250 250 100
recounted here are part of a 200

2-18mm

series of Dbeams tested for —rrr—_

moment redistribution by Dilger T Su———— 2 lomn.
(1966). The beam designated H2

(Fig. 8a) was designed for the Ha P 300
elastic distribution of moments, z !
while the beam designated H4 o @ 170 @3 sfo‘—l i
(Fig. 8b) was designed for, and i o
achieved, a redistribution of 1 - 2-temn
moments of 50 percent. Both i k—ew;—! z:m
beams were subjected to high F—st0— Iz_wM

T

shear stresses. Figs. 9 and 10
demonstrate  that both  the Fjg, 8 Geometry and reinforcement of
deflections and distribution of pjjger's (1966) beams

moments were predicted accurate-

ly by the program NONARCS. Note

the difference in deflection when only flexural behaviour is
considered. Additional comparisons between theory and tests are given
in Sveinson (1989).

Moment redistribution in continuous T-beams

A study is now presented to demonstrate that a higher degree of
moment redistribution than those allowed in the Canadian Building Code
may be achieved for normally reinforced sections. The T-beam shown in
Fig. 11 was analyzed. In accordance with CSA-M84 the slab thickness
and effective flange width are taken as 150 mm and 2000 mm,
respectively.

The beams were subjected to three different 1live loads,
corresponding. to.roof; office and storage areas. In keeping with the
National Building Code of Canada (1990) the live loads were taken as
1.0 kPa, 2.4 kPa and 7.2 kPa, respectively, For the beam spacing of
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LOAD - kN
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Fig. 9 Comparison of computed and
experimental load-deflection curves

MOMENT - kNm

4,40 m and a superimposed dead load of 1.0 kPa,

was established to be 23.2 kN/m.

Fig. 10 Comparison of computed
moments with test results

the total dead load

The live loads, shown in Table 1,

were calculated by considering the reduction factors for tributary

areas.

Live load (kN/mZ)

Live load/dead load

Table 1
Live Loads

Beam A
(Roof)

4.4

0.10

Beam B
(Office)

10.2

0.44

Beam C
(Storage)

36.1

1.56

Note that for Beam A the live load is rather small. Therefore,
Beam A was only designed and analyzed for full load on all spans. For
Beams B and C the four loading arrangements shown in Fig. 11 were
analyzed and the resulting bending moments are listed in Table 2.



Table 2: Reinforcement and factored moment resistance

Supports B and D

Support C
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Steel Area Steel area
Beam Tension Comp. c¢/d M Tension Comp. c¢/d Mr

mm2 mm2 - kNem mm2 mm2 - kNem
A0 1500 300 0.201 202 1000 400 0.143 149
A30 1100 300 0.155 154 700 300 0.116 102
A40 900 300 0.135 127 600 300 0.107 90
BO 2000 300 0.265 262 1300 200 0.182 178
B30 1300 400 0.174 177 1300 300 0.187 177
B40 1200 400 0.164 150 800 300 0.125 114
co 3500 800 0.402 427 2800 400 0.360 351
C30 2300 800 0.258 296 1800 600 0.218 238
€40 1900 800 0.210 249 1700 600 0.207 226

In a study of this type

there is always the question as | 1 |
to what values should be taken 1 1 —]
for the material resistance AY a5 ?B 7500 ?c 7500 1° 7350 j
factors. In laboratory tests () gram sPaANS | i
where all material properties 500, 2000 | 150
and section parameters are ¢ ! I e S I —
closely controlled it is custo- T 'T“—:j1‘400? T’ !
mary to set all factors to fo—4400 | 4400
unity. However, in actual  (, cross secTion
structures the performance may |
be SignifiCantly altered by ‘h['l]ll]ll IENNSAENEEEEERNENEEEEENSEEERE
uncertainties in material and [
section properties. For this ?dlﬂANNGFASEt i | i
investigation the material | : :
strengths were taken as their 0 O O R !
factored values in both design A 2 . 2
and analysis so as to represent E)LDANNGICASEZ | | |
a worst case scenario. The i H H ;
specified concrete compression [IIITITLI ”"‘“IT{ f”TTTTTn%
strength and yield stremgth of % o % . ® ? @
steel in tension and compression ! f ! !
were taken as 30 MPa and 400 |
MPa, respectively, and according é ] %
to the Canadian Code CSA A23.3-

M84 the resistance factors for
concrete and steel are, respect-
ively, ¢c = 0.60 and ¢S = 0.85.

t) LOADING CASE

4

Fig. 11 Beam geometry and live
load cases

m
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For flexural strength design the tensile strength of concrete,
fc , is ignored, yet it is accounted for in calculating flexural
cfacking and in the flexural stiffness.

Based on elastic analyses, Irrcher (1983) and others reported
that the effective flange width over the intermediate supports of
continuous beams is considerably smaller than in the positive moment
regions. Also, in actual structures, differential shrinkage and
pre-loading during construction may generate tensile stresses as high
as the concrete tensile strength. For this reason, the modulus of
rupture for the negative moment regions was taken to equal zero, while
in the span sections its value was taken as 3.0 MPa. Each of the
continuous beams were designed for three percentages of moment re-
distribution, namely 0%, 30% and 40%. Table 3 shows the factored
negative moment resistances for each beam at the support. The
postscripts 0, 30 and 40 refer to the percentage of design moment
redistribution. Note that for Beam B30 only supports B and D are
designed for 30% redistribution while for support C the moment
redistribution is zero so that all three supports have the same
factored flexural resistance.

Table 3

Elastic bending moments (in kNem) under factored moments for
the loading cases of Fig. 11

Load M1 MB M2 MC M3 MD M4
Beam Case

A 1 146.8 207.6 73.6 145.4 73.6 207.6 146.8
B 1 183.5 259.5 92.1 181.7 92.1 259.5 183.5
2 109.5 200.9 105.5 211.0 105.5 200.9 109.5
3 163.6 271.1 108.1 135.7 29.7 216.8 200.6
4 217.2 213.1 29.4 150.4 129.0 216.3 102.6
C 1 310.8 439.6 156.0 307.9 156.0 439.6 310.8
2 86.3 263.4 198.0 395.5 198.0 263.4 81.3
3 297.3 474.6 216.7 169.4 -32.6 311.1 363.2
4 367.9 299.9 -50.5 213.4 267.3 309.5 71.6

A nonlinear analysis was performed using
The relevant output is summarized in Table 4.

the program NONARCS.

In order for moment redistribution to be deemed successful the
behaviour must mnot only satisfy the strength but also the
serviceability criteria, i.e. the deflections and the crack widths
must be within allowable limits. The crack widths may be assumed to
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Table 4

Computed moments and steel stresses under service and factored

loads
SUPPORT B SUPPORT C SUPPORT D
X M 3 4 M f H M 3
(1) com _com £ com com s conm com s
Load Load Shift M 3 - K £ N f —
Beam Pattern Level con * Ht Kel ‘sfy com * Kr “el ‘Sfy ° Kr Kel ‘:fy
AC 1 s no 134 230 0.85 0.676 92 233 0.81 0.685 136 234 0.87 0.668
£ no 187 0.43 0.91 136 0.91 0.93 192 0.95 0.93
A30 1 s no 153 340 0.95 1.0 76 272 0.67 0.800 153 343 0.97 1.009
£ no 153 1.0 0.7 104 1.02 0.77 153 1.0 0.74
AL0 1 f no 108 300 0.67 0.882 83 340 0.73  1.000 113 317 0.71  0.932
f no 131 1.03 0.64 99 1.10 0.67 134 1.06 0.65
80 1 s no 167 221 0.86 0.650 123 242 0.90 0.712 169 219 0.86 0.644
f no 234 0.89 0.90 170 0.96 0.94 237 0.90 0.91
2 s no 128 167 0.82 0.491 139 274 0.89 0.806 129 169 0.83  0.497
f yes 204 0.78 1.02 186 1.04 0.88 200 0.76 1.00
3 s no 177 231 0.85 0.679 92 249 0.99 0.732 155 202 0.91 0.59%
f yes 254 0.97 1.17 137 0.77 1l.01 196 0.75 0.91
& s no 153 200 0.93  0.588 99 194 0.85 0.571 153 199 0.92  0.585
£ no 205 0.78 0.96 168 0.94 1.12 231 0.88 1.07
B30 1 s no 138 272 0.71 0.800 129 253 0.94 0.744 141 278 0.72 0.818
£ yes 171 6.97 0.66 170 0.96 0.9 175 0.99 0.59
2 s no 129 254 0.83  0.747 144 227 0.92 0.668 116 228 0.7 0.611
£ yes 165 0.93 0.82 175 0.99 0.83 156 0.88 0.78
3 s no 149 294 0.73  0.865 96 189 1,06 0.556 1264 264 0.73  0.718
£ yes 174 0.98 0.80 128 0.72  0.95 163 0.92 0.75
4 s no 119 234 0.72 0.688 101 197 0.87 0.579 124 243 0.74  0.715
£ yes 164 0.93 0.77 134 0.76 0.89 169 0.95 0.79
B4O 1 s no 142 302 0.73 0.888 107 3% 0.78  0.982 146 310 0.75 0.912
f yes 177 1.18 0.68 125 1.10 0.69 173 1.15 o0.67
2 s no 127 269 0.81 0.791 106 333 0.68 0.979 119 252 0.76 0.741
£ yes 155 1.03 0.77 133 1.17 0.63 158 1.05 0.79
3 s no 154 327 0.76 0,962 92 256 0.99 0.753 120 253 0.70 0.744
f yes 179 1.19 0.66 120 1.05 o0.88 157 1.05 0.73
4 ] no 116 245 0.720 o0.721 9% 262 0.81 0.771 121 256 0.72 0.753
f yes 153 1.02_0.72 119 1.0 0.29 160 1.07 0.2
e 1 s no 314 243 0.90 0.715 242 232 1.00 0.682 317 246 0.91 0.72
£ yes 459 1.07 1.04 287 0.82 0.93 459 1.07 1.04
2 s no 215 165 1,03 0.485 292 281 0.94 0.826 210 161 1.00 0.4%
£ yes 304 0.71 1.15 3s7 1.02  0.90 306 0.71 1.16
3 s no 342 266 0.91 o0.782 157 226 1.17 0.665 228 175 0.93  0.515
£ yes 453 1.06 0.95 226 0.64 1.33 456 1.07 1.46
4 s no 218 167 0.92 0.491 196 186 1.16 0.547 286 221 1.17  0.650
f yes 458 1.07 1.53 265 0.75 1.24 404 0.9¢ 1.31
€30 1 s oo 288 331 0.83 0.974 217 31 0.89 0,924 284 326 0.82 0.959
£ yes 307 1.046 0.70 240 1.01 0.78 311 1.05 0.71
2 s yes 188 214 090 0.629 240 340 0.77 1.0 183 209 0.88  0.615
£ yes 257 0.87 0.98 254 1.07 0.64 250 0.84 0.95
3 s yes 297 340 0.79 1.0 133 193 0.99 0.568 204 230 0.83 0.67¢
£ yes 322 1.09 0.68 188 0.79 1.11 304 1.03 0.98
4 s no 241 276 1.01 o0.812 147 21 0.87 0.621 204 233 0.83 0.685
f yes 308 1.04 1,03 202 0.85 0.95 286 0.97 0.92
c40 1 L wo 238 340 0.69 1.0 225 340 0.93 1.0 242 340 0.69 1.000
£ wo 280 1.12 0.64 236 106 0.77 283 1.14 0.65
2 s yes 180 247 0.86 0.726 216 330 0.69 0.971 177 242 0.85 0.712
£ yes 247 6.99 0.9 247 1.09 0.62 234 0.94 0.89
3 s yes 244 340 0.65 1.0 136 242 1.01 0.712 187 258 0.76 0.759
4 yes 299 1.20 0.63 174 0.77 1.03 227 0.91 0.73
4 s no 187 233 0.79 0.685 149 227 0.88 0.668 194 241 0.79 0.709
£ yes 271 1.09 _0.90 197 0.87 0.93 262 1.05 _0.85

M g ~ moment st section from nonlinear analysis
f‘ « tensile steel stress at service load

s - service

f « factored
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vary with the tensile stress in the reinforcement at the critical
sections.

It may be seen in Table 4 that for Beam A the steel stresses
under service load reached the factored yield stress ¢ £ = 340 MPa
for 30% redistribution, yet for Beams B and C yield was ‘not reached
until 40% redistribution was attained. The reason for this is that
shear cracking and the resulting shift in the tension force did not
occur in Beam A. However, shear cracks developed in Beams B and C.
It has been well documented (Langer 1988) that once shear cracks occur
the deformation capabilities of sections become greatly enhanced.
Langer states that the plastic capacity generated by the shift in the
tension force produces the predominant portion of the plastic
rotation.

Figure 12 depicts the relationship between load and moment
throughout the load history for beams BO and B40. It is obvious from
Fig. 12b that the redistribution of moments starts well before
yielding of the steel.

-~
wp @ o ™ g
BEAM BO . BEAM B40 . L7
//’/" i
08} 4 08~ SUPPORTC..
% /7
SPAN 1 i supPoRT B ¥ ()
+08F F 06~ ,'\\7’/ SPAN 2
N SPAN 2 7 Coaf S
3 o > S ““SPAN 1
,.,-',;”“\suppon“r c 041 Ry
,#*" NSUPPORT B B
4 :
oz ,;/,"\ELASTlc THEORY 021~ 77 .
Via ELASTO- PLASTIC
0 ! ! ! ! | ol ! ! ! 1
O 02 04 06 08 10 O 02 04 06 08 10
w/we LEAT

Fig. 12 Relationship between load and moment (a) beam BO-load case
one, (b) beam B40-load case two

Serviceability

To establish a relationship between the moment redistribution and
steel stress under service load, all the computed steel stresses at
the critical sections under the different loading cases for the beams
analyzed are plotted in Fig. 13 as a function of Mr/M , where M_ 1is
the factored moment resistance and M is the elasti¢ moment under
factored load. The following equati%n. is generated from a linear
polynomial regression analysis (Sveinson, 1989):

f M M2

s T r
=1.6 - 1.3 ) + 0.4 (/)
¢sfy Mel Me£

(23]
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With ¢s = 0.85 we obtain:

f M M2

[24] f—s - 1.4-1.1(M—r y + 0.3 (M—r )
y el el

For design Eq. 24 may be simplified:

[25] f = 06 f (1 + R) 05 06 [sh4 08 0.9 1.0 11 12 i3 14 X3
s y Me /Mgl
where R = 100(1 - Mr/Mel)' Fig. 13 Steel stress vs. Mr/MeE
For zero percent redistribution £ = 0.6 £ in Eqs. 24 and 25.

This corresponds to the steel stress wunder’ service conditions
recommended by CSA-M84 (Clause 10.6.4) in lieu of more detailed steel
stress calculations.

It is interesting to mnote that for the different nonlinear
analyses performed, the maximum midspan deflections remained
relatively constant for each loading arrangement, regardless of the
amount of moment redistribution. This observation may at first seem
surprising, however it must be remembered that as reinforcement is
removed from the negative moment zone it is being compensated for in
the positive moment zone.

Proposal for moment redistribution in CSA-A23.3 M95

Engineers have traditionally been taught that the distribution of
moments in an actual structure follows the distribution of moments
obtained by an elastic analysis with I = I .  However, this only
applies to structural steel and to a very $iRifed number of concrete
structures where the relative stiffness remains constant throughout
the structure as well as through the load history.

Hopefully, this investigation has shown that the nonlinear nature
of concrete structures results in moment distributions which may vary
significantly from the elastic distribution without excessive steel
stresses, crack widths, or deflections.

It has been suggested here and elsewhere that the subject of
moment redistribution must be divided into two categories: (1) beams
without shear cracks and (2) beams with shear cracks. Remembering
that shear cracks did not occur for Beam A and that steel stresses
reached the factored yield stress ¢Sf for 30% redistribution the
following percentages of moment rediStribution are proposed for the
next edition of the CSA Building Code.

[26] R = 45-75 ¢/d < 25 no shear cracks
R = 60-100 c/d < 35 shear cracks
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The ratio c¢/d maybe taken as the wvalue after moment
redistribution.

In the absence of an axial force diagonal cracking may be assumed
to develop under a shear force (c.f. Eq. 11-30 of CSA-M84):

[27] Vo, = 0.2,\./fé b d

Compared with other design codes (e.g. CEB BS 8110), CSA-M84
gives very little information about the factors which influence the
redistribution of moments. Future editions of the CSA should reflect
the importance of adequate shear reinforcement, proper anchorage
lengths of the longitudinal reinforcement, and should explain the
increased deformational capacity when diagonal tension cracks due to
shear are present.

Based on the material presented, the following revisions to
CSA-M84 are proposed.

(1) Clause 8.4 Redistribution of Moments in Continuous
Prestress and Nonprestressed Flexural Members.

Except where approximate values of bending moments
are used, the negative moments calculated by
elastic analysis at the supports of continuous
flexural members for any assumed loading
arrangement may each be increased or decreased by
not more than,

R = 45-75 c¢/d < 25% if shear cracks do not occur
or,
R = 60-100 c/d < 35% if shear cracks do occur.
The shear force at formation of shear cracks is
V_=0.22/f" b d
cr c W

The modified negative moments shall be used for
the calculation of moments at sections within the
spans.

(2) Clause 10.6.4 Crack Control Parameter
When the specified yield strength, £ , for tension
reinforcement exceeds 300 MPa, cross sections of

maximum positive and negative moments shall be
proportional so, that the quantity z, given by

z - £°/iA 1073
S C
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does not exceed 30 kN/mm for interior exposure and
25 kN/mm for exterior exposure. The calculated
stress in the reinforcement at specified loads,
fS(MPa), shall be computed through a rigorous
analysis. In lieu of such computations, £ in the
positive moment zone may be taken as 60%° of the
specified yield strength, f . For beams designed
for redistributions exceeding 10 percent the steel
stress shall be calculated through a nonlinear
analysis. In 1lieu of such computations the
following equation may be used to compute fs

fs = 0.6 fy(l + R/100)
where R is the moment redistribution in percent.

(3) Section N8.4 of the Explanatory Notes on CSA-M84 should be
altered as follows:

Redistribution of elastic bending moments can
occur prior to yielding as a result of the change
in stiffness due to flexural cracking in the span
and over the supports and prior to failure as a
result of inelastic deformations.

Adequate shear reinforcement must be based on the
shear force producing the maximum effect between
the elastic and redistributed value.

Anchorage lengths for the 1longer bars in the
negative moment zone must be based on the elastic
point of contraflexure and must include any shift
in the tension force due to shear.

Rotational capacity of a section may be determined
by integrating curvatures over an appropriate
length and must incorporate any shift in the
tension force due to shear cracking.

Conclusions

This study shows that it is possible to allow a larger percentage
of moment redistribution than what allowed in the present Canadian
Building Code (CSA A23.3-M84), particularly in continuous members
where shear cracks have formed. A proposal for the relevant clauses
is presented for discussion.
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ELASTIC RATIONAL ANALYSIS AND TESTS OF UNBRACED CONCRETE
FRAMES

by Richard W. Furlong
E.C.H. Bantel Professor of Engineering Practice
The University of Texas at Austin

INTRODUCTION

Members of reinforced concrete structures "shall be designed for the maximum effects
of factored loads as determined by the theory of elastic analysis” to satisfy Section 8.3.1
of the ACI Building Code'. However, at any failure limit state, it is known that the
actual distribution of forces in a structure will differ significantly from that indicated by
elastic analysis. The inelastic redistribution of forces under excess loading tends to
permit the frame to sustain limit loads greater than those suggested from elastic analysis.
One detrimental influence from inelastic response due to excess loading is the reduction
in member stiffness and potential instability of concrete frames as the mass of a structure
is displaced laterally toward an unstable overturning mode of failure. Section 10.10 of
the Building Code requires designers to consider both local and overall instability of
concrete structures rationalized in terms of beam-column effects on compression
members. If first order elastic analysis is to serve as the basis of design, Section 10.10.2
permits the use of an approximate evaluation of compression member (and of frame)
slenderness effects by means of moment magnifier factors in Section 10.11.

For individual columns in braced frames, moment magnification procedures of Section
10.11 are easy to visualize, almost intuitively logical. The coefficient C,,, which reflects
the shape of the column bent by applied load, and the critical column thrust P,, which
reflects slenderness, are readily understood for individual columns. If framing and
loading conditions indicate that little or no moment should exist in an individual column,
the use of a minimum eccentricity in accordance with Section 10.11.5.4 is straightforward
without complication.

For columns in unbraced frames (frame stability) the use of moment magnification
procedures is less apparent and logical. Lateral sway of unbraced frames is resisted by
flexural restraints at beam and column joints throughout the frame. Consequently, it is
necessary to accumulate influences from every beam and column joint in order to
evaluate total sway sensitivity and strength. The intuitive logic of load paths and element
response is less apparent when the procedure indirectly must take into account changes
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in stiffness for individual columns and beams at joints as lateral forces move each level
with respect to other levels. Still less apparent is the need and the amount of magnified
moment in beams when the moment magnification factor is expressed as a ratio between
column axial forces. Details regarding the role of creep under sustained load, minimum
eccentricities, and required limit load combinations of factored thrust and moment for
design are not obvious or intuitively apparent. Determination of strength requirements
to resist second order displacements of unbraced frames can be perceived from a rational
analysis of the second order displacements more logically than from magnification
procedures.

RATIONAL ANALYSIS OF UNBRACED FRAMES AT LIMIT LOAD

The Commentary to ACI 318-89' in Section 10.10.1 suggests that a second order
analysis which includes the effects of sway deflections and inelastic material response will
produce approximations more accurately and probably more appropriately than the
magnification procedures. Any "complete" second order analysis procedure would
require modification of the stiffness properties of frame members and an adjustment of
the geometric relationships among members in response to loads incremented until the
structure ceases to resist loading. Such a "complete” analysis would be needed for every
possible sequence of loading that possibly might cause structural failure; a requirement
far too cumbersome for conventional design practice.

A simplified second order analysis for predicting failure conditions completely enough
for purposes of design can be based on customary elastic analysis computer software?**
if the stiffness properties of frame members are taken to be low enough slightly to
overestimate any detrimental effects of inelastic displacements under applied factored
(limit) loads. Such a second order analysis will produce adequate (safe) moment maxima
at the ends of columns and beams directly as output without the need or complexities of
additional moment magnifiers for unbraced frames. It will be safe if overall detrimental
effects of displacements are overestimated. It will be reasonable and it will lead to
efficient design, if the amount by which detrimental effects are overestimated is not
excessive.

An illustration of analysis for the strength limit of an eccentrically loaded column
appears in Fig. 1. The solid, heavy line of the graph indicates actual values of thrust P
and moment M at the base of the column as the force F is increased until the graph
intersects the limit strength interaction diagram for the column. The long-dashed lines
are graphs of predicted values for P and M at the base of the column if initial material
stiffness E, and uncracked concrete cross section moment of inertia I, were used in the
analysis. The shaded portion between the long dashed lines and the straight, constant
eccentricity line represents second order moments caused by the displacement of the
loading point as the force F is increased. The short-dashed lines show results from an
elastic analysis that uses a reduced cross section stiffness value oEl,. A ‘safe’ capacity
for design of the column will be estimated if the reduced oEL, graph intersects the limit
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Fig. 1- Secondary Forces ona Beam Column

strength graph at a value of axial force lower than the value for which the actual behavior
graph at the limit state of strength intersects the interaction diagram. If the estimated
capacity is too large, the estimated capacity would be higher than the actual value, and
a structure so designed would be under-strength. Inelastic response is concentrated near
the base of the column of Fig. 1. Similar zones of inelastic response occur at ends of
beams and columns at the most highly stressed joints in a moment-resistant frame.

The second order effect of displacement can be estimated with a P-Delta procedure
suggested by Adams and Wood® and extended as described by MacGregor and Lai‘. The
procedure can be described with the column of Fig. 1. At any level of force F, the
vertical component P, acts with a lateral component H;. The displacement y, is computed
as a function of the force H; and the material and geometric properties of the column.
There will be an extra amount of moment Py, in addition to the value of the column
length L times the force H,. The extra moment P,y, can be divided by the column length
L to obtain a dummy horizontal force H’ that, if added to the initial force H; in the initial
analysis, would have given the total moment at the base of the column. The extra
moment will create extra deflection, and an iterative process is apparent. The analysis
of relatively stiff structures will require only the first iteration, as there will be little, if
any, increase in the horizontal forces due to lateral displacement. The iterative process
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is complete when there are no changes in horizontal force. The joint moments from the
‘final’ iteration represent the correctly augmented values, including second order effects.
These moments without further magnification can be saperimposed with gravity load
requirements to determine maximum values for design. If the iteration does not
converge, the structure is unstable.

A unique mass of a structure to be considered during the required horizontal force
event is not specified in any of the building codes or specifications for design. Indirectly,
there are minimum requirements for occupancy loads, there are live load reduction
factors, and there are several required combinations of factored loads. In most cases the
amounts of axial force P, for which columns must be designed is determined not from
analysis of an indeterminate frame, but from unit loads applied story-by-story to
contributing areas that are supported by each column. Certainly, a cautious and safe
procedure for design could use as the mass of the structure in place during the horizontal
force event the sum of all required design thrusts P, The actual structural mass
probably will be smaller than the amount of all design thrusts acting simultaneously, but
secondary moments will not be sensitive to small variations in the mass of a stable
structure.  Further refinement of the design secondary moments downward more
accurately to reflect the actual probable mass of the structure during the horizontal force
event must await statistical documentation more precisely to define the probable mass.
The sum of values P,, factored axial load currently required for design, is the best
estimate of mass consistent with current building codes.

In summary, a rational analysis for the design of buildings, braced or unbraced, is
possible with first order elastic analysis computer software readily available. The rational
analysis includes the following steps:

1. Determine factored design thrust values P, for every column.

2. Determine factored moment values M, for response to gravity loading.

3. Determine factored moment values M,, for response to required lateral loads with the
mass of the structure taken as the sum of factored values P, while incorporating second
order joint displacements using reduced EI values for frame components. The second
order effects can be determined using an iteration of elastic analyses for the secondary
effect of lateral displacements.

STIFFNESS REDUCTION COEFFICIENTS

The Commentary to ACI 318-89 contains in Section 10.10 the suggestion that beam
stiffnesses of 0.5E.]I, taken together with column stiffnesses equal to EI, (0.2 +
1.2p,E/E,) will produce acceptably safe estimates of forces to be used for strength design
of members. Columns must contain at least the minimum reinforcement ratio p, = 1%,
and the ratio between steel and concrete material stiffness will be about 8. Thus, a
stiffness reduction coefficient of « = 0.3 could serve as a safe lower bound value for all
columns in-order implicitly to satisfy the recommendations of the Commentary to the
Code. It may be argued that an analysis based on column stiffnesses 30% of the nominal
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values and beam stiffnesses 50% of the nominal values will reflect for gravity loading
column moments lower than those most likely to occur under service loads for which
response traditionally has been reflected by analysis with the nominal stiffnesses of the
members.

The Building Code equation (10-11) for effective EI values in the moment magnifier
process permits a coefficient of a = 0.40 if the effect of creep is ignored. The neglect
of creep with 84 = 0 is accepted explicitly as part of the advice for determining effective
length factors k for columns in unbraced frames. During the design process, the use of
the same coefficients both for beams and for columns would not distort analysis of
gravity load response as does the use of o factors for beams different from « factors for
columns. The specific values « that can be recommended for rational analysis in design
must produce safe results when coupled with Code-specified strength analysis procedures.
Frame response studies with « = 0.4 for all members has been made, and results have
been compared with test data.

LABORATORY TESTS OF INDETERMINATE FRAMES

Data regarding actual strength of unbraced concrete frames is limited, as few limit
load tests of indeterminate structural systems are made outside of laboratories. Reports
of frame tests>®”® include 7 structures with column loads plus horizontal loads and 13
structures with column and horizontal loads plus beam forces. The limit strength of each
of the frames for which test data are available was estimated analytically using reduced
member stiffness values for all members. The capacity limits of cross sections were
determined for the full nominal dimensions and material properties reported for the
laboratory specimens. Strength reduction factors ¢ = 1 were used for analytic
predictions of frame capacities.

Concrete stiffness was taken to be E, = 57000 /f,” as recommended by ACI Code
Clause 8.5.1 for normal weight concrete. The highest reported value of yield strength
for reinforcement was used for the strength analysis of those frames for which a range
of values f, were reported. A short program for personal computer equipment was used
to determine the bending capacity of cross sections subjected to any amount of axial
force. Since the influence of displaced ‘gravity’ loading on test frames was taken into
account, the estimates of limit load on test frames did require an iterative procedure with
a step-by-step linear analysis of response to lateral force.

Cross section strength was estimated with the rectangular stress block pro- cedures
satisfying Clause 10.2.7 of the ACI Code'. All material strengths were taken from the
reported values with capacity reduction factors ¢ = 1.

The process of analysis for limit loads from a second order procedure requires more
than simple superposition of responses to diverse load cases. One sequence of loading
can produce failure mechanisms different from those from other sequences for application
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of limit forces. The 7 frames® that were subjected only to axial forces and a sway force
were tested with controls that kept constant the ratio between the axial forces and the
sway force. Consequently, for these simple 4-member frames, all 4 corner regions of
theoretically equal strength should fail simultaneously from the same combination of limit
thrust and moment. Results of analysis and from test data for the 7 frames are listed in
Table 1. In theory, there was no post-yield redistribution redundancy for these frames.

In contrast, there were 5 frames®, also with 4 members, but the beams for these
frames were loaded in addition to the column forces and sway force. Beam bending
moments at the "leeward" corners away from the sway force were increased by the sway
force while moments at the other corners were decreased by the sway force. Eventually,
the stiffness of "leeward" corners decreased when limit loads were approached. The
opposite corners provided a redundant, reserve resistance that delayed actual failure in
the laboratory. The analytic estimate of strength as reported here did not recognize the
reserve, post-elastic response to load, but the analytic ‘failure’ loads are those which
would cause the first cross section of the frame theoretically to exhibit crushing spalling
failure. Results from analysis and from observed results for the 5 frames are displayed
in Table 2.

Eight 4-column, 2-beam frames were subjected to column loads, beam loads, and a
lateral force™®. These frames contained several sources of post-elastic reserve strength
after the first region theoretically should reach failure. Again, analytic estimates of
strength were taken to be the loads associated with the first region to reach a crushing-
spalling stage of response when procedures of ACI 318-89" Section 10.2.7 were used to
estimate strength. Analytic estimates of the first failure load on these 8 frames are
tabulated with test results in Table 3.

The Table 2 summary of data from frames® that were loaded with "gravity load forces
P and B before lateral force H was applied contains also the estimates of first failure
loading if the ratio among beam loads B, column loads P and lateral force H had been
held constant during the tests. During actual testing, the "vertical" forces were held
constant while the lateral forces were increased until the frames ceased to resist lateral
force.

Predictions of the capacity to resist lateral force on the frames already loaded with
about 60% of their axial force limit cannot reflect overall safety when compared directly
only with the observed lateral force limit. Such a comparison will reflect only the safety
of frame capacity available after 60% of the column resistance to axial force had been
used. In order to obtain an overall reflection of safety, each of the frames from Ref. 6
and Ref. 7 were assumed to have been loaded with all forces increased in the same
proportions as those that were reported to be the test forces at the failure state of each
test frame. For purposes of estimating and comparing overall strength, the ratios H/P
and"B/P"were held constant'even thoughthe actual test procedure involved a constant
ratio B/P while the sway force H was increased until failure.
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DISCUSSON OF ANALYTIC PREDICTIONS

Table 1 displays the results from studies of failure load estimates including second
order effects when 2 sets of effective stiffness reduction coefficients were used. In one
set, the value of o = 0.3 was used for columns and « = 0.5 was used for beams. In
the second set, « = 0.4 was used for ALL members. With the first set, the ratio
between measured strength and calculated strength varied from 0.89 to 1.42, averaging
1.11 with a coefficient of variation equal to 0.17. When EI, values were reduced with
the constant ratio o = 0.4 for ALL members, ratios between measured strength and
calculated strength varied from 0.87 to 1.51, with an average value of 1.10 and a

TABLE 1

Breen and Ferguson Frames - Ref. 5
84in

-ILc Ly P+ ;—3194or5|n I:l
f

PI-| 4in—»{ le 4in— 4

12E

All members b =6 in
Column bars 4 #3

Beam bars 8 #4

L m
A 0]
obeam =0.5 abeam =0.4
¢col =03 ccol=04
] Meas P
Frame £ f, L HP Pl leamQ P Bmp-|! O gk_ggglcu
Ks Ksi__in K | ina K in"4 K

BF1 398 556 840 0.02 375 16.0 548 300 1.25 128 522 31.7 1.18
BF2 417 591 84.0 0.06 25.0 16.0 237 21.7 115 128 230 227 1.10
BF3 320 564 832 002 31.0 81 6.78 209 142 65 6.83 204 151
BF4 381 57.0 449 0.04 55.0 301 197 618 089 241 189 631 087
BFS 4.06 521 449 012 425 301 141 376 1.13 241 138 382 1.1
BF6 3.70 521 449 0.04 550 301 192 596 092 241 185 608 090

BF7 299 554 432 0.04 400 81 320 400 1.00 6.5 347 378 1.06
Average 1.1 1.10
Standard Deviation 0.17 0.20

1.000 ksi = 6,896 MPa 1.000 k =4,448 KN 1.00in=25.4mm
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coefficient of variation equal to 0.20. The constant value « = 0.4 produced results
which differed from measured results by ratios that averaged slightly higher than those
estimated with « = 0.3 for columns and a = 0.5 for beams. The small differences may
not be significant with only 8 sets of values. Certainly, an average difference less than
2% is not significant for predictions of concrete structures in general. A constant value
a = 0.4 was used for all subsequent studies of frame response.

The results of studies for the 5 frames of Ref. 6 are listed in Table 2. Limit strength
analysis was performed for limit loads applied in the same sequence as that used for the
physical tests, i.e., gravity forces were applied and held consistent while horizontal forces
were increased until failure of the frame. Ratios varied from 0.94 to 2.30 with a
coefficient of variation equal to 0.55, suggesting that the analytic procedure was not
accurate at all. Analytically, after a "hinge" formed at the leeward columns, frame
stiffness decreased too much for the windward column to maintain the horizontal force
while gravity loads were held constant. Reports of the tests indicated that some residual
strength remained in the frames with vertical loads in place after leeward columns had
developed hinges. Additional horizontal forces were resisted before failure occurred.
It is apparent that reducing all of the member stiffness values to 40% of the gross EI
values was a greater reduction than the real frames experienced. Actually, 90% or more
of the flexural load resisting capacity in joints was consumed before any horizontal forces
were applied. This comparison between measured and calculated horizontal forces
reflects only the amount of strength remaining after vertical loads were in place, and the
scatter among strength prediction ratios should be expected.

In order to study the relative strength of frames overall, the ratio between loads P, B,
and H analytically was held constant at the ratio reported from tests just before the failure
of each frame took place. Results from the "Proportional Loading until Failure" study
are shown in Table 2. For this study of overall frame behavior, the ratios between
measured total failure load and calculated total failure load varied from 0.98 to 1.25 with
a coefficient of variation equal to 0.09. The one frame for which an "unsafe" strength
estimate was made had the lowest value of concrete strength.

The 8 frames with 4 columns reported in Ref. 7 and Ref. 8 reflected significantly
more reserve redundancy than did any of the 2-column frames. Results displayed in
Table 3 for analysis of behavior under the same loading sequence as that used in the tests
took as the strength limit the "first yield" forces on any member of the frame. The ratios
between measured first yield load and calculated first yield load varied from 0.90 to 2.50
with an average value of 1.71 and a coefficient of variation equal to 0.45. The one
"unsafe calculated load involved the one frame for which the second order stability index
Q was highest, but unlike the frames from Table 2, the concrete strength value was
nearly the highest value for any of the frames.
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TABLE 2
Rad and Furlong Frames - Ref. 6

Column Bars 4 #3, Grade 75 H
Beam Bars 4 #4, Grade 60 ' N
except 4" all beams "
RF2 with 4 #3, Grade 75 . —‘L.. [+
ace 4 < Only RF45 42"

Only RF3 5" B
Corner moments M i
Frames1,2&5 M=16B, M =10.5H

Q=1/[1- 34.5(P+B)/E]

—eS
NN \\\\ ]
Frames 3& 4 M =16.6B, M =10.88H . ' J .yl
and M =10.12H 28 28" 14— 26"

Q=1/]1-15.8 (SP)/E]

84"
Analysis with & = 0.40 all members P & B Constant Proportional Loading
Increase H to Failure until Failure
Frame £, ¥ B HP L iy O Hoge Hineas Progy © Pasc P v
-H_calc calke
ksi in"41 k k k k

RF1 3.15 1.00 0.0256 0.0400 128 | 20 244 09 2.06 [540 1.93 441 122
RF2 2.90 1.00 0.0256 0.0239 128 [ 1.1 210 117 094 [ 460 216 470 098
RF3 4.46 1.18 0.0330 0.0433 250 | 25 189 150 167 {577 183 51.0 113
RF4 660 0.83 0.0280 0.0195 128 { 1.7 196 121 140|870 19 770 113

RF5 3.55 1.00 0.0256 0.0383 128 | 23 262 091 230|600 201 481 1.25

Average value 1.72 114
Std. Deviation 0.55 0.09

1.000 ksi = 6.896 MPa 1.000 k = 4.448 KN 1.00 in = 25.4 mm

The point at which calculations suggested initial failure corresponded to the same point
that was actually observed to yield first in only 2 of the 8 frames. Instead of an overall
and constant reduction in stiffness as assumed for analysis, the actual frames developed
local regions of cracking and yielding which produced failure modes different from those
predicted from elastic analysis of the artificially "soft" structures. Columns actually
experienced initial yielding in 5 of the 8 frames, whereas the analysis suggested that
beams would be the first point of yielding in 6 of the 8 frames. It is apparent that beams
in the real frames lost more effective stiffness than did the columns under significant axial
forces which restrained cracking and tension yielding of column bars.
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TABLE 3
Ford, Chang, and Breen Frames - Ref. 7 & 8

All Members 6 in wide

P
P 1.23P [i B 0.77P
H BM2 * BM4 + * BMe *
—>
‘f 4'—pl 14 5"—p (@ 4 e 319" |4—
42 ¢t B B c2 s B B ca
BM1 BM3 O BMS ) __
ANSSSS\SWN NN\ ASNSNNSNY NSNS
28-P14 268>
84" 84"

Beam Bars 4 #3 @ 52 to 57 ksi except FCB8 and FCB9 with 4 #4 and 2#3 @ 64 ksi
Column Bars 4 #3 @ 52 to 55 ksi except Col C4 with 6 #2 @ 52 to 55 ksi
and FCB7 & FCB8 with 4 #3 @ 71 to 74 ksi

P andB Constant, Hto 1st Yield Load Proportions Constant

Frame f'c B Hmeas Q  Hac Hieas é::cljct: Pmeas B/P HIP Pcalc Pmeas

ksi kK k Heale  (obs.) k' Peac

FCB1 3.00 0 6.30 1.89 296 213 CI3T 60.0 0 0.105 448 1.34
(CI3 B)

FCB2 3.39 15 400 179 160 250 Bmirt | 60.0 0.0250 0.067 440 1.32
(CI3 B)

FCB3 3.36 0 720 177 3.97 1.81 Bmirt | 60.0 0 0.120 43.0 1.39
(CI3 B)

FCB4 3.76 1.75 250 195 1.78 1.40 Bmirt 70.0 0.0250 0.036 50.0 1.40
(Bmirt)

FCBS5 3.74 176 270 196 1.78 1.52 Bmirt | 70.0 0.0250 0.03% 48.0 1.46
(CI4B)

FCBs 4.00 -2.1 216 231 063 1.5% Bm4lt 84.0 0.0250 0.025 72.8 1.15
(Bmblt)

FCB7 6.12 115 263 242 291 0.90 Bmirt |107.0 0.0107 0.025 0.5 1.18
(Bmirt)

FCB8 6.17 1.6 717 231" 400 1.7% CI4B [103.5 0.0155 0.069 83.0 1.25
(CI3T)

Average 1.7 1.31

Std. Deviation 0.45 0.10

1k = 4448kN 1 ksi = 6.896 MPa 1in= 25.4mm

A second study was made for failure loads overall with the ratio between loads H, B,
and P analytically held constant at the ratios which were reported just prior to the limit
load state. Results shown in Table 3 display ratios between measured limit loads and
calculated limit "proportional” loads varying from 1.18 to 1.69 with a coefficient of
variation equal to 0.16.  The average value of 1.42 in these 4-column frames is
noticeably higher the similar average of 1.13 for 2-column frames.
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RECOMMENDATIONS FOR AN ELASTIC ANALYSIS P-DELTA METHOD

Among the 20 tested frames that were analyzed for calculated strength with rational
P-Delta second order displacements determined with member stiffness taken as 40% of
the nominal values EI,, 17 resisted loads higher than calculated limit values. In the
analytical studies which employed proportional loading until the first strength limit of any
member was reached, the average ratio between measured capacity and calculated limit
load was 1.12 for the 12 frames with 2 columns, and the average ratio was 1.42 for the
8 frames with 4 columns. Safe designs can be determined with linear elastic programs
that incorporate a second order P-Delta analysis if all member stiffnesses are reduced to
40% of their nominal, uncracked values. The amount of safety against lateral buckling
increases with the number of columns and the associated degree of indeterminacy for the
frame.

It is recommended that provisions of the ACI Building Code specifically permit for
unbraced frame design the use of elastic, P-Delta analyses with member stiffness values
reduced to not more than 40% of their uncracked nominal values E.,. Furthermore, it
is recommended that a frame stability capacity reduction factor be allowed to increased
from the current value of 0.7 in a 2-column structure to a value of 0.9 if there are 10 or
more columns.

The following expression for effective flexural stiffness in the calculation of limit
response to factored loads on unbraced frames is suggested:

El =¢aE with (1]
o =04
¢ = 0.66 + (Number of Columns) / 50 < 0.90 [2]

Frame analysis for the effects of gravity loading without lateral force can employ the
same values for member stiffness. The relative values of member forces will be the same
as those derived with customary nominal EI values for uncracked stiffness, since ALL
member stiffness values are modified by the same ratio.

It is possible that concrete structures could be shown to possess strength adequate for
the required gravity plus horizontal force condition without revealing that the frame
contains individual columns too slender to resist gravity load conditions alone. Columns
too slender to resist gravity forces in the "braced frame" condition can be identified by
height-to-thickness ratios®. If the ratio L/h exceeds 8 for an interior column or 12 for an
exterior column, each should be checked for strength as a column in a braced frame using
ACI Code Clause 10.11.5.1.
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NOTATION

T T

ST MmN ® QW

concentrated transverse force on a beam.

factor reflecting the curvature of a compression member in ACI Eq(10-7).
eccentricity of axial force, e = M/P.

Young’s Modulus of Elasticity.

Modulus of Elasticity for concrete.

Modulus of Elasticity for steel.

Force.

yield strength (stress).

design compression strength of standard 6-in (250mm) concrete cylinders.
horizontal (lateral) force.

lateral force which produces overturning moment equal to that caused by lateral
displacement of structural mass.

8

3

H, initial value of applied lateral force.
H,. calculated lateral force which produces first failure zone in a frame.
H,.. measured lateral force which produced first failure zone in a frame.

moment of inertia of a column cross section.
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NOTATION (continued)

TR O m g

jn=20a-a~Na-Na-Nla-
=§§n E.Z=

R/IRE<ON

s>

moment of inertia of a column cross section.

moment of inertia based on exterior gross dimensions of a cross section.
coefficient of column length to indicate effective distance between hinged ends.
length of a beam or column.

moment.

factored moment (required for strength).

factored moment for strength to resist lateral load.

column force, axial load.

slenderness index strength, taken as Euler load with no material yield limit.
calculated axial load on reference column.

observed axial load on reference column.

factored axial force required strength.

initial value of axal force.

amplification factor for lateral force effect from displaced building mass.
displacement in direction perpendicular to column.

initial value of displacement y.

flexural stiffness reduction factor.

creep coefficient equal to ratio between permanent and design values of P.
coefficient of axial force on reference column.

ratio between area of reinforcement and total area of cross section.
capacity reliability reduction factor.
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The authors are very glad to dedicate this paper to Professor Mircea
Cohn, as a sign of recognition to him and to the Canadian School for
their contributions to RC nonlinear analysis. The authors take this
opportunity to recall some results recently obtained in Milan,during
Professor Cohn's last stay as Visiting Professor (Spring 1990), and
which have been only partially published so far.

SUMMARY

The nonlinear analysis of a few R/C double-tee beams recently tested by
Regan and Rezai-Jorabi is here performed by means of a NLFE code based
on an incremental-iterative procedure, and of a Limit-Analysis approach
based on the assumption that stirrups yield first and that the stress
field in the web is characterized by a diagonal compression field. Both
approaches fit more than satisfactorily the test data and both produce
numerical results which show remarkable agreement, not only globally,
but also locally.

1. INTRODUCTION AND NATURE OF PROBLEM

Concrete behavior is characterized by various important nonlinearities
regarding both solid undamaged concrete and cracked concrete. With
reference to damaged concrete, a few mathematical models for crack
formation and propagation, and for stabilized cracking (see for
instance [2] and [10] for aggregate interlock) have recently become
suitable for introduction into existing F.E. codes.
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The constitutive laws regarding each type of nonlinearity may in
principle be used in an "evolutive'" analysis, as well as in a "limit"
analysis, in the latter case with more limited results, but with far
less numerical and computational effort.

To what extent two very different approaches agree in the
modellization of a well defined structural problem is the aim of this
paper, where the ultimate analysis of regularly cracked R/C thin-webbed
beams failing in shear is performed in parallel by means of a NLFE code
(evolutive analysis, see also [9,11]) and a truss-and-tie model (limit
analysis, see [5-8]), in order to investigate the stresses and strains
at impending collapse in shear of a few R/C double-tee beams recently
tested by Regan and Rezai-Jorabi [14] at the Polytechnic of Central
London (Fig.1). In both approaches, the so-called Rough Crack Model for
aggregate interlock is used [2,10].

In the NLFE code (which is basically an improved version of ADINA)
concrete behavior is modeled wvia a hypoelastic constitutive
relationship in the principal directions of the stresses, according to
an orthotropic formulation. In tension a bilinear law is adopted in the
directions of the principal tensile stresses, with a rising branch
followed by a falling branch (Fig.2). The latter has to be adjusted
according to mesh size in order to have an objective description of the
material in case of strain softening. What is interesting here is that
aggregate interlock is activated as soon as the principal tensile
stress goes to zero (at the end of the falling branch). Afterwards, the
above stress becomes negative, if a crack slip or an "equivalent"
shear strain is born along the planes at right angles to the direction
of the original principal stress (see Section 2). Of course, in this
case the crack reference system is no longer a 'principal system" since
shear stresses occur in the cracked planes, as we have already said.

In the limit analysis, a modified truss-and-tie model is used:
reinforced concrete is represented via a system of concrete struts in
compression and steel bars in tension; beam failure is assumed to be
caused by stirrup yielding and strut collapse (in shear and
compression) at the end sections of the struts. Both strut flexural-
stiffness and aggregate interlock in the web are introduced, as well as
stirrup-to-concrete bond. The stress field in the web is assumed to be
characterized by a diagonal compression, not aligned with the shear
cracks. Here crack displacements are not constant as in [5,6,7], but
are variable along the shear cracks in the web (see Section 3), as
already assumed in [8,9], but a more realistic distribution is adopted
for the interface displacements, in order to consider the pinching
action of the longitudinal bars (when flexure-shear cracks occur).
Moreover, the dowel action is introduced in a more consistent way (see
[8]) and the shear transmitted by the top uncracked flange (Case II,
flexure-shear cracks) or by both flanges (Case I, web-shear cracks) is
introduced too.

The results obtained with the two theoretical approaches show good
agreement and fit Regan and Jorabi's test results, with reference to
the ultimate loads and to the directions and values of the stresses and
strains (smeared cracks included). In both approaches, the crack
orientation is assumed to be ''fixed", whilst a certain amount of crack
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rotation always occurs, because of the formation of new micro- and
macro-cracks associated with the evolution of the stress and strain
field, at increasing loads.

2., EVOLUTIVE ANALYSIS AND CONCRETE CRACKING

A NLFE code comparable to ADINA was adopted in the investigation of the
evolutive behavior of beams 1,4 and 7 tested by Regan and Rezai-Jorabi
([14], see Section 4 and Fig.l). The code is based on an incremental-
iterative procedure running on a 80386 PC. The beams were modeled as 2-
D elements (plane stresses), with the flanges reduced to 2-D elements
lying in the longitudinal mean plane. Isoparametric elements with 4
nodes and 4 integration points were used for the modelisation of the
web and of the flanges, while truss elements were adopted for the
stirrups and main reinforcement. The typical mesh is shown in Fig.3,
where the truss elements coincide with the vertical sides of the
concrete (isoparametric) elements, and the vertical truss elements over
the end supports also include the end blocks of the beam. The dashes
represent the main reinforcement.

In fitting Regan's test results, the load is applied by increasing
the vertical displacement of the top fiber of the mid-span section: the
program stops automatically when the corresponding mid-span force
becomes stationary, because of the yielding of the main reinforcement
or the crushing of the top fibers in compression.

As regards the behavior of the materials, an elasto-hardening law
was introduced for the reinforcement (Et=l/40 Es, according to test

data), while concrete was modeled as an orthotropic material, with the
axes of the orthotropy coincident with the directions of the principal
stresses.

In compression-compression the uniaxial stress-strain law for each
principal direction is based on the uniaxial law in simple compression,
but the strength parameters are increased according to the 2-D failure
envelope [1].

In tension-compression, the type of stress-strain law already
introduced for compression-compression is still applied in the
compressive direction. In the tensile direction, a stress-strain

bilateral law (as shown in Fig.2) is adopted, where the peak value f:t

depends on the failure envelope. The same holds for tension-tension and
for pure tension.
As for pure tension, the initial rising branch up to the peak (oc=

fct’ €.~ fct/Ec= 1.5x10-* in Fig.2) is followed by a linear falling
branch, whose slope Et(<0) and final strain €, depend on the fracture
energy Gf, tensile strength fCt and mesh size h [3]:
= - - 1 = 2 =
E = -E /(A/h-1) with X ZGfEc/fCt €= 2 Gf/(fcth)
where Gf=(2'72+3'10fct)fétda/Ec (N/mm), according to Bazant and Oh [3]

(da= maximum aggregate size = 20 mm in this paper).
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Beyond the falling branch (sCZ €.), concrete is cracked and in

pure tension (i.e. if no shear occurs in cracked planes) aggregate
interlock is never activated.

In tension-compression or tension-tension cracks form parallel to
the principal compressive direction 2 (ol> o, 02< 0) or parallel to

both principal directions (01> 0,> 0), corresponding to the peaks of

w
the uniaxial stress-strain curves (o,=f < f _,
1 ct ct

Afterwards, crack orientation is "frozen" and cracks are fixed. Beyond
the falling branch, aggregate interlock becomes active once the
following conditions are met with:

Sn(crack opening) = €.s 2 0.1 mm, St(crack slip) = Y,S 2 0.01 mm, where

%
= <
or o, fct' fct)'

s is the crack spacing. Aggregate interlock is introduced according to
the rough crack model [2,10}: in Fig.2a the stress-strain curve for
concrete in tension is plotted including the linear-elastic behavior,
strain softening and aggregate interlock. As regards aggregate
interlock, three different paths in the strain domain are considered.
The same o (ec) curves are plotted in Fig.2b, but the shear stress -

shear strain curves Tc(yc) are plotted too, for the same paths in the
strain domain (as an example, the strain ratio r is a linear function
of the normal strain ezr, which includes the contribution of cracking).

The tangent stiffness matrix of cracked concrete is neither symmetric
nor positive defined.

3.LIMIT ANALYSIS

As in [5] and [6] the beam is considered as a truss consisting of two
parallel chords (the flanges with the main reinforcement) connected by
inclined compression struts (the concrete struts bound by the shear
cracks) and vertical rods acting in tension (the stirrups).

Let us assume that (a) the crack pattern in the web is regular
with closely spaced inclined cracks, Fig.4a; (b) the faces of the
inclined cracks are rough and interlocked, Fig.4b; (c) the axial force
in the struts has a certain eccentricity because of the initial
cantilever-type behavior of the struts, Figs.4c,d; (d) the shear
failure is governed by the yielding of the stirrups and is accompanied
by the failure in shear and compression of the end sections of the
struts (Case I, Fig.4c) or of the top section (Case II, Fig.4d); (e) a
uniaxial and diagonal compression field prevails in the web (Fig.4e). A
set of equilibrium and compatibility equations can be written, as well
as a set of constitutive relationships regarding aggregate interlock,
solid concrete, crack spacing and bond (between the stirrups and the
concrete).

Here the displacements at the crack interface are not considered
uniform, but realistic laws are adopted for crack opening and slip. Two
cases are always referred to: Case I with web-shear cracks and Case II
with flexure-shear cracks (see Figs. 4a,b where the average crack
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displacements are shown). Crack behavior is assumed to be governed by
Mode I close to the tip (Case II) or at both tips (Case I), whilst a
Mixed Mode behavior is introduced in the regions far from the tips. In
order to model the above-mentioned behaviors, crack opening and slip
are given suitable distributions along an inclined crack (Fig.5):

- Case I (web-shear cracks)

8 =6 Sn(g-g2) R 8= 8 [1-cos(2nE)] (1)

- Case II (flexure-shear cracks)

6n= 6n(35-1.552) R 6t= 6t[1-cos(wg)] (2)

where £=C/1, 1=z/sing; Sn,5t= average values of crack displacements

as introduced in [5,6,7].
At increasing values of Tu/fé (Tu= ultimate shear stress= Vu/bz

with Vu= ultimate shear force, z = internal moment lever arm, b = web

thickness), the highly nonlinear system of equilibrium, compatibility
and constitutive equations is solved iteratively in order to evaluate
ATINT’ ATBND and ATDWL (contributions of aggregate interlock, strut

bending stiffness and dowel action to web capacity in shear); s (crack
spacing); Pst (stirrup ratio); a, o, and €, (orientation, stress and
strain of the diagonal compression field); ats(sgvlesy= ratio of the

average strain in a stirrup to the yield strain of the steel, in the
solid concrete between two contiguous shear cracks);

als(= Aeivlssy= ratio of the average plastic strain accumulated in a
C’BC’S

stirrup, at the crack interface, to the yield strain [8]); ant m’ ot

and Sn (average values of the stresses and displacements along a rough
shear crack). At the end of each iteration, St and Gn are evaluated in
a set of points along an inclined crack, according to Egs.l and 2, in

order to update the values of Bﬁt

The model considers dowel action (which is present only in Case
II, bottom flange in Fig.4a), as well as shear transfer in the un-
cracked flanges (both flanges in Case I, top flange in Case II). As for

dowel action VD’ its contribution to shear transfer is half-way between

the responses of the "strong mechanism" (VDL) and of the "weak mech-

~C . .
and onn’ and start a new iteration.

anism" (VDR)’ as shown in Fig.6a (the bar/dowel pushes against concrete

core in the former, and against concrete cover and stirrups in the
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(a) caset (b) case ll (c) casel (d) Caselt

Fig.5 - Different distributions adopted for crack opening and slip (Gn,
St): (a,c) web-shear cracks and (b,d) flexure-shear cracks.

Vou 'Vor
Fig.6 - (a) Dowel action developed by longitudinal bars (main reinforce-
ment); (b) limit state due to the attainment of the ultimate capacity in
bending and compression in the strut [8]; (c) dowel action developed by
the bars embedded in the outer parts of the bottom flange; (d) limit
state in torsion, in the bottom flange [8,9].

(c)ti— 3*

Fig.7 - Shear in the top
flange (Case II) and in
both flanges (Case I)
resulting from (a) strut
bending (redistribution
of internal forces) and
(b) direct bending of the
flange (flange/strut compatibility); (c) equivalent breadth of a flange.

REGAN | NLFE | LA | REGAN | NLFE LA NLFE

BEAM | o | 2 | nff | wff | W/l | & © a0 o] o
RI | 0706 | 43 | 0215 | 0231 | 0.236 30 28 | 31 | 32 | 20 | 21-23
R2 | 0706 | 34 | 0245 / 0.279 33 / 33 | 34 | 19 /
R3 | 0706 | 54 | o021 / 0.200 2 / 30 | 31 | 22 /
R4 | 0404 | 60 | 0158 | 0.169 | 0.128 19 25 [ 23 | 26 | 19 | 15-20
R5 | 0404 | 26 | 0235 / 0.260 27 / 2 | 28 | 15 /
R6 | 0404 | 65 | 0136 / 0.122 19 / 23 | 26 | 20 /
R7 | 1.010 | 41 | 0248 | 0244 | 0.307 32 35 | 34 | 35 | 24 | 1923
R9 1.010 63 0.216 / 0.227 30 / 31 33 28 /

Table 1 - Summary of results (fé,cz in MPa).
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s /v

latter). The constitutive relationship adopted
here [8] and plotted in the side-picture is
based on some test results recently obtained
in Milan by the first two authors. Dowel ac-
tion contributes to the equilibrium equations
of concrete struts and depends on the dis-
placement Gv evaluated in the centroid of the

bottom reinforcement. Dowel action is limited by the ultimate capacity
in compression, bending and shear of the bottom end section of the
e
studied in this research project, only the bars placed close to the web
mean plane (@16 bars in Fig.l) develop large dowel forces, since they
push against concrete core or against web stirrups and concrete cover,
whilst the bars placed in the outer parts of the cracked flange (i.e.
far from the longitudinal mean plane, $20 bars in Fig.l) are far less
effective, since dowel forces are limited by the amount of torque that
concrete can transfer from the projecting parts of the flange to the
inner part, where the flange and the web join together (Figs.6c,d).
This limitation is always active in the beams examined here.

In order to fit the test results, the contribution of dowel action
was evaluated on a case-by-case basis, from the actual values of crack
opening and slip in the centroid of the longitudinal steel in tension
(16 bars, Fig.l) or from the torque capacity of the concrete
cantilevers ($20 bars in Fig.1).

As regards Vj (920 bars Fig.6c) the following equation was used:
£33 b3 %% n% k3
! - - 2 = = 1066
VDé ZVD 2(Mu /s) where Mu kTu ab?, Ty fct 0.27 fC s
a = Max(t,s), b = Min(t,s), k = 0.47 (plastic distribution).

%
concrete struts (VDS V.= M /s, Fig.6b). As for double-tee sections

As regards V. (16 and 020 bars, side picture), two different

equations were adopted [8] depending on concrete cover, bar free
interspace and diameter, and concrete strength. As for ks and kw

empirical laws available in literature were used.
As for the shear transferred by the uncracked flanges, their

contribution results partly from the equilibrium of the concrete struts
(or strut/flange joints, Fig.7a) and partly from flange/strut
compatibility (Fig.7b). The former contribution is indirectly taken in
consideration in the strut equilibrium equations [7], while the latter

contribution is directly evaluated, starting from the displacement GV
(Fig.7b) and from the bending/shear stiffness of the flange part
between two contiguous cracked planes. The displacement év is given a

value equal to 50% of the value pertaining to flange/web interface,
according to the displacement distributions shown in Figs.5c,d.
Since SV is a locally-imposed displacement, an 'equivalent" or

"effective" value has to be adopted for the breadth of the flange, B .
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Here B is defined as shown in Fig.7c. In the end, the shear
contribution due to compatibility (both flanges in Case I, top flange
in Case II) is merely added to the shear capacity of the web. Work is
still in progress in order to improve the evaluation of ATCF.

When fitting test results, the spacing of the stirrups (which is
always assumed to be equal to crack spacing, Fig.4a) is an input data
and the constitutive equation governing crack spacing is dropped. When
using the proposed model for designing a double-tee section, the
optimal stirrup ratio is found by solving the afore-mentioned system of
equations, including the constitutive equation of crack spacing [8].

4. REFERENCE TESTS

Eight of the nine double-tee R/C beams tested by Regan and Rezai-
Jorabi [14] were analysed by truss analogy (Limit Analysis), namely
beams R1-R7 and beam R9; beam R8 was not included because the stirrups
did not yield, so the authors said. Three beams (R1,R4,R7) were
considered for NLFE analysis.

The geometry of the beams and the most relevant details of the
reinforcement (stirrups and main bars) are shown in Fig.l. The
variables were the strength of the concrete (cilindrical strength
fé= 26-65 MPa) and the stirrup ratio (pst= 0.71%, 0.40%Z, 1.01%Z), as

reported in Table 1.

According to the crack patterns shown in [14] (beams R1 and R4)
and in a report published in 1987 (beams R1,R2,R3,R4,R5 and R6, "Shear
resistance of I-sectioned reinforced concrete beams", Structure
Research Group, Polytechnic of Central London), two beams were
subjected to severe cracking in the bottom flange (R1 and R2), three
beams to 1light cracking (R3, R4 and R6), R5 did not show any cracking
and the crack patterns of R7 and R9 were not shown. Consequently, beams
R1-R4 and R6 fall into Case II of 1limit analysis (flexure-shear
cracks), beam R5 falls into Case I (web-shear cracks); as for beams R7
and R9, both cases have to be considered. Here all the beams except R5
are analysed according to Case II, but in [9] all the beams (except
R1,R2 and R5) were analysed in both ways in order to ascertain the
differences between the predictions based on the two above cases. As
for beams R7 and R9, the ultimate shear capacity turns out to be little
affected by the modellization of the bottom flange (Case I).

In the evolutive analysis, the stirrup spacing was kept constant
(Fig.3) but a few numerical tests performed with the NLFE code proved
that the effects of this simplification are negligible in this type of
analysis.

5. RESULTS OF THE ANALYSIS AND FITTING OF TEST DATA

The results of the analysis (NLFE = Non Linear Finite Element; LA =
Limit "Analysis) 'and  the 'most 'relevant test data [14] are shown in
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Table 1 and Figs. 8-12. All the results and data regard the ultimate
load situation.

In Table 1, columns 4,5 and 6 refer to the ultimate shear stress,
put in a dimensionless form (Tu/fé): on the whole the agreement is very

good, as also shown in Fig.8, where the computed shear strengths
compare satisfactorily with the test results. The effects of the
variability of crack displacements and crack extension (up to the
bottom flange) are discussed in [9].

The agreement between the directions (angles o and 63) and

the values of the compressive stress in the web (0,) is very good
(Table 1 columns 7-12): in the NLFE analysis, the values are related to
the 8 Gauss points in the web of the section at 1/4; in the limit
analysis o, has a unique value all over the web. It 1is worth noting
that in the limit analysis the crack direction was given the value 40°
with respect to the beam axis, as suggested by the crack patterns shown
in [14] (¢=38-43°, see also Fig.ll).

Fig.9 refers to the stress and strain field in the web according
to NLFE analysis of beam R7: the stresses are very close to a "diagonal
compression field" (Fig.9a, o=34°, Table 1) and the principal strains
(smeared cracks included) are practically aligned with the principal
stresses and with the diagonal compression field (Fig.9b).

In Fig.10 the shear stress in the concrete is plotted in the
cross-section at 1/4, for beams R1,R4 and R7: in the 1limit analysis,
the discontinuities are due to the shear cracks; as before, the
agreement between LA and NLFE analysis is satisfactory on the whole,
and really very good for beams Rl and R7. As already observed in [9],
dowel action and eccentrical compression produce interface
discontinuities in the cross-section, except in the middle point were

CASE |l
p=40°
1 CASE | ] £ 45 MPa
p=40°
f'<=45 MPa
r4 To/fe = .10[|.15 |.20].25
J -
- ~’ru/f'cz 10 .18] .20} \.25
000 | 100 200 = 300 = 400 0.00 i do % 30
ATwr (MPa) ATar (MPa)

Fig.12 - Limit Analysis : diagrams of the local contribution of aggregate
interlock to shear transfer in the web,according to the Rough Crack Model
[2,10]; fsy= 745.MPa, z = 370 mm, same section as in [14].
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bending is zero according to the assumptions adopted in  LA.
In Fig.12 the local contribution (ATINT) of aggregate interlock to

shear transfer is plotted along the cross section of the web. Fig.10
does not refer to any specific beam tested in [14]: only the depth of
the section (H=450 mm, z=370 mm), the stirrup diameter ($6 mm) and the
stirrup strength (fsy=745 MPa) are the same as in Regan's beams, while

the stirrup ratio and spacing are among the unknowns and are optimized,
according to the most general use of the code based on the proposed LA
model (see also [6,8]): of course, at increasing Tu-values, larger

stirrup ratios are required, which means smaller stirrup and crack
spacings, and smaller crack widths: in the end, aggregate interlock
plays a more relevant role.

6. CONCLUDING REMARKS

The starting point of this paper was to investigate to what extent a
rather sophisticated FE computer code, similar to a few of those
currently available, and a much simpler code based on a limit analysis
model could produce comparable results. Our interest in comparing two
such different approaches can be explained (a) by the many aspects of
limit analysis, which make it a powerful tool in structural engineering
practice, (b) by the access to comprehensive NLFE codes and (c) by the
availability of well documented test results.

Both the theoretical methods and the experimental investigation
confirm the validity of the diagonal compression concept for thin webs
failing in shear due to stirrup yielding. The agreement among the
results (ultimate loads, principal stress and strain directions, stress
distribution in the cross section) in spite of the different
assumptions adopted in each theoretical method and the unavoidable
simplifications with respect to the real beams, confirm the maturity of
the actual theoretical and numerical tools; on the other hand a few
questions are still open about the real interaction among the different
resistant mechanisms, since the overall results seem little affected by
the different emphasys that each approach puts on a number of different
aspects of real R/C elements, such as dowel action, tension stiffening,
bond and local multiaxial behavior.

Last but not least one thing is certain, that the two approaches,
one based on evolutive analysis and the other on limit analysis, are
not "foes" but "friends", since they are in good agreement whenever a
chance to meet on equal ground is given.
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LOADING ON CONCRETE STRUCTURES DURING CONSTRUCTION

S. K. Ghosh
Portland Cement Association
Skokie, lllinois

INTRODUCTION

Strength failures leading to total or partial collapse of structures
are extremely rare. Serviceability failures, associated with a significant
reduction in the capability of a structure to function as intended, are
much more common. Such failures, although not catastrophic or life-
threatening, may result in significant financial losses. Excessive floor
slab deflection is a common example of serviceability failure.

Floors in residential as well as office and institutional buildings
are nowadays often made of thin, solid concrete slabs with two-way
reinforcement. The trend in recent years has been a progressive
decrease in the ratio of the thickness of slab to the length of span. This
obviously causes a corresponding reduction in the flexural rigidity of the
slabs. Safety against strength failure has hardly been compromised in
this development. The deflections, however, are quite a different matter.

Scanlon? has classified the types of damage that can occur as a
result of excessive slab defections into four categories; (i) perceptible
sagging, (i) damage to non-structural elements, (i) impairment of
function, and (iv) impairment of strength. Slab deflections, when visible,
are not only aesthetically unpleasing, but also cause human reactions
ranging from mild concern to fear of possible collapse. Damage to non-
structural elements most commonly consists of cracking of wallboard or
brickwork, although localized crushing of partition walls can also
occur.! Window glazing in exterior wall cladding has been known to
break under the weight of a deflecting floor above.l In a survey
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published by Mayer and Rusch,2 106 out of 259 reports of building
damage in Germany concerned damage to partition walls resulting from
excessive slab deflections. The function of a building may be impaired
when the doors and windows are jammed or the operation of sensitive
equipment is affected. Large slab deflections may also lead to ponding
of water, with resultant increase in loads that may eventually contribute
to strength-related failure.

Excessive long-term deflections of slabs are clearly to be
avoided. The available field data on reinforced concrete slab
deflections are first reviewed in this paper. Factors contributing to
excessive slab deflections are examined. Attention is then focused on
shoring, form removal, and reshoring--aspects of construction that
greatly influence the long-term deflections, because they determine the
magnitudes of the construction loads that are imposed on concrete slab
systems while they are still relatively young and immature.

AVAILABLE SLAB DEFLECTION DATA

Field data or experimental data obtained under field conditions
on slab deflections are still relatively scarce.3

Progressive slab deflections had been causing trouble in
Sweden in the early 1950s and led to the first study of a rational
approach to stripping of formwork for floors.4

Slab deflection problems had appeared in Australia later in the
1950s and were among the main themes in an extensive study there of
flat plates.> A lightweight aggregate concrete slab, spanning three
bays in each direction with cantilevers in the long direction, was cast on
16 steel columns. The span-to-depth ratio was 41 in the long direction.
The slab was allowed to stand under its own weight for 8 months,
during which time the deflections at the center of the middle panel
increased by more than 12 times the initial elastic deflection. About
20% of this was attributed to differential settlement of inner and outer
columns, about 40% to further crack causing a reduction in stiffness and
to local bond slip, and about 40% to creep. It was pointed out that the
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slab was made of high-creep expanded shale concrete which was
exposed regularly to high ambient temperatures and plenty of direct
sunlight during its early history, and was under widely fluctuating
conditions of temperature and relative humidity throughout the long
period of observation.

Jenkins et al.6 reported large deflections in electrically heated
reinforced concrete slabs of a large number of Scottish apartment
buildings. The slabs were supported on three sides on load-bearing
walls, and were free along the fourth edge. Some of the deflections
were up to 1.25 in. (32 mm) in a clear span of 12 ft 5.5 in. (3.8 m). High-
shrinkage aggregates and under-floor heating were considered factors
contributing to the large deflections.

Greymayer and McDonald’ conducted a field investigation to
determine the short- and long-term deflections and concrete strains in
an Army barracks flat plate structure. Due to a rather large slab
thickness corresponding to a span-to-depth ratio of approximately 28,
all observed deflections were within about 1/800 of the shorter span
during the 45-month observation period, in spite of an early temporary
construction load estimated to have been almost 30 percent in excess
of the total design load.

Field deflection measurements were taken on five buildings in
and around Sydney, Australia for periods of up to 9 years.8 The results
of investigations on two of the buildings are of interest here. The first
building had a flat plate slab system. The longer span-to-depth ratio
was 31 in an interior panel. The deflection behavior of the slab was
expressed by the equation:

Total (short-term plus long-term) deflection = A+B+C+D+E+F
Where A = initial elastic deflection (13% of total) caused by slab dead

load on removal of props,

B = long term elastic deflection (1.5%) caused by superimposed

loads and finishes, without producing cracked section in the
slab,



C = initial cracking deflection (0.5%) due to production of
cracked sections in the concrete slab at the time of prop
removal,

D = long-term cracking deflection (19%) due to transformation of
slab from uncracked to partially cracked as construction
loads occurred or as tensile failure was initiated under
sustained load and drying shrinkage,

E = shrinkage deflection (26%) produced because the
shrinkage restraint afforded by the different quantities of
reinforcement at the top and bottom surfaces of the slab was
unequal, and

F = creep deflection (40%).

The ratio of long-term to initial deflection for the structure was 6.7.
It was pointed out that the initial deflection comprised only the elastic
deflection under slab dead load. Also, the Sydney ready-mixed
concrete used had high shrinkage characteristics.

The second investigation8 was on part of the second level of a
large reinforced concrete flat slab in an open car park. The longer
span-to-depth ratio was 36. The ratio of long-term to initial deflection
was 8.7 at two points of observation. Shrinkage aggravated by poor
curing and windy conditions at the time of placement was thought to be
a major factor contributing to the large long-term deflections.

Bortemark measured deflections of concrete floor slabs in two
similar apartment houses. The structural framework was made of cast-
in-situ reinforced concrete and comprised floor slabs spanning in one
direction and transverse walls supporting the floors. The spans were 20
ft1in. (6.1 m) and 22 ft 4 in. (6.8 m), and the total slab depths 8 in. (203
mm) and 9 in. (229 mm) respectively. In both cases large formwork
units were used. The table forms were removed 4-8 days after casting.
In order to reduce the deflections, props were mounted between the
floors, and these props were not removed until 18-28 days after casting.
A considerable scatter was observed around the arithmetic average of
the measured deflections for both buildings. The size and time
dependence of the deflections were said to be affected by several
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individually varying factors: for instance, different concrete ages at
removal of formwork, different standards of workmanship and different
loading conditions. It was observed that the deflections were
considerably less for the top floor slabs. This difference was mainly due
to different loading conditions, since the top floors did not support any
floors above during the erection of the buildings. Since the span and
the span-to-thickness ratio were approximately the same for the two
buildings studied, their deflection curves deviated only slightly from
each other. The final deflection for the floors on which measurements
were taken in Building 2, including the top floor, was estimated at 0.53
in. (13 mm) or 1/500 of the span. About one-third of the time-dependent
deflection had taken place already after two months when the partitions
were erected. The measurements showed that an average deflection of
0.20 in. (5 mm) had occurred at this time, and therefore the remaining
deflection after the erection of partitions amounted to only 0.33 in. or
1/800 of the span.

Branson10 measured initial and time-dependent deflections of a
normal-weight two-way slab consisting of nine panels, each 6 ft (1.8 m)
by 6 ft (1.8 m) with relatively deep beams. The thickness of the slab was
1.5 in. (38 mm). The structure was loaded with sandbags at age 30
days, with the loading maintained for 400 days. The average relative
humidity was 50%. Measurements indicated an ultimate ratio of time-
dependent to initial slab deflections of about 5.

Jenkins11 carried out tests on a panel on the fourth level of a
building comprising five levels of flat plate floors. The test panel was
surrounded by other panels on all sides; however, two adjacent panels
on one side were only half-size panels. The maximum span-to-depth
ratio was 26.7. The following observations were made:

« The formwork was stripped after ten days, at which time

deflection at the center of the panel was 0.079 in. (2 mm).

e« The panel deflected further when adjacent panels were
unpropped and formwork was erected for the slab above. At this

stage, the total deflection at the mid-point was 0.210 in. (5.3 mm),

indicating the large construction loads carried by the slab. Minor
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fluctuations in deflection occurred when the slab above was

stripped and repropped. When all the props were removed, the

deflection at center of panel was 0.181 in. (4.6 mm), 75 days after
the slab had been poured.

» The bricks which were to form the brickwork partitions were left in
piles on the slab for two weeks to act as preload. By the time the
bricklaying had commenced, the mid-point deflection was 0.201
in. (5.1 mm).

» After one year, the deflection at the center of the panel due to
dead load was 0.311 in. (7.9 mm)--nearly four times the initial
deflection.

« Fourteen months later when live load was applied (25 psf or 1.2
kPa to the southern half of the test panel, and adjacent panels to
the south side of the test panel), the mid-point defiection was
0.339in. (8.6 mm). After another 12 months with some additional
live load (approximately 5 psf or 0.24 kPa), the mid-panel
deflection was 0.461 in. (11.7 mm).

Slab deflections were recorded by Sbarounis12-14 in 175 bays
on 13 upper floors of a multistory flat plate building one year after
casting. Lateral force resistance of the building was supplied by a stiff
system of beams and closely spaced wide columns. The center-to-
center slab spans were 21.6 ft (6.5 m) and 22.4 ft (6.8 m). The average
slab thickness was 7.25 in. (184 mm), with a standard deviation of 1/4 to
1/3 in. (6.4 to 8.5 mm). The assembly supporting the fresh concrete
reportedly consisted of three sets of forms with reshores extending 5 to
7 floors below. A two floor per week schedule was maintained. The
sequence of stripping and reshoring had a significant influence on long-
term deflections. Some areas were reportedly stripped and reshored
half a bay at a time. On most occasions stripping reportedly occurred
over large areas or entire floors prior to reshoring. Instances of
stripping of large areas on the day of casting or while casting was in
progress were also reported. Construction photos showed examples of
all the above procedures. They also showed that the reshoring was not
closely spaced, it did not line up from floor to floor consistently, or was
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omitted. If forms are stripped over large areas prior to reshoring, the
slab being stripped would receive the maximum construction load at the
time of form stripping. Thus even if the supporting assembly consisted
of 8 or more slabs, the construction loads absorbed by the slab being
stripped would be those attributable to a 3-slab supporting assembly. If
stripping occurred while the new slab was still wet, the supporting
assembly would consist of two slabs. The reported prevailing
construction procedure was felt to be equivalent to a 3-floor supporting
assembly.

Materials for partitions, ceiling, the building exterior, etc. were
delivered and stored on the intended floors beginning about 1-1/2 to 2
months after casting. The estimated equivalent load during storage was
25 to 30 psf (1.2 to 1.4 kPa). After the installation of finishes, the
estimated load was 12 to 15 psf (0.6 to 0.7 kPa). The additional service
dead load contributing to creep was assumed to be 20 psf (1 kPa). The
net measured one-year deflections ranged from 0.53 to 2.16 in. (14 to
55 mm). They averaged 1.35 in. (34 mm) with a standard deviation of
0.29 in. (7 mm) and a coefficient of variation of 21.2 percent. In 90
percent of the cases deflections exceeded 1 in. (25 mm). in 10 percent
of the cases they exceeded 1.72 in. (44 mm).

Scanlon15 conducted a survey of two-way slab deflections both
during and after construction of a 28-story office tower in Edmonton,
Canada. The floor system consisted of an 8 in. (200 mm) thick two-way
flat slab with 6 in. (150 mm) drop panels and 5 ft x 5 ft (1520 x 1520 mm)
column capitals. Columns were spaced at 30 ft (3000 mm) on center.
Floor slabs were cambered 0.6 in. (15 mm) at bay centers and 0.4 in.
(10 mm) on grid lines. Five types of slab panels were categorized
according to the boundary conditions along each side of the panel, and
the panel reinforcement details. The floors were constructed using a
system of flying formwork with each table being approximately the size
of one full bay. Three levels of heavy timber reshoring were provided.
Due to the large size of the formwork panels, an entire bay had to be
stripped at one time. In many cases, the reshoring was not done
immediately, so that three-day-old slabs were left unshored for five or
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six hours in some cases. Slab deflections were measured both during
construction and at approximately one year after completion of
construction. The mean one-year mid-panel deflection ranged from 1.8
to 1.54 in. (33 to 39 mm) for the five slab types, while the coefficient of
variation ranged from 24.8% to 31%.

CAUSES OF EXCESSIVE DEFLECTIONS

Excessive slab deflections may stem from deficiencies related to
design, construction materials, environmental conditions, and changes
in occupancy.]
Design Deficiencies

The most common design deficiencies resulting in excessive
slab deflections are insufficient thickness, and insufficient
reinforcement, with consequent premature yielding of such
reinforcement.
Material Deficiencies

Higher than normal creep and shrinkage characteristics have
been identified as factors contributing to excessive slab deflection
problems reported in Australia, as indicated in the preceding section.
Higher than normal prestress losses may lead to unanticipated
deflections in post-tensioned slabs.! Alkali-aggregate reaction may
cause cracking that adversely affect flexural stiffness. 1
Environmental Conditions

In slabs with surfaces exposed to daily or seasonal temperature
fluctuations, temperature gradients set up through the member
thickness may lead to unanticipated deflections.
Changes in Occupancy

If a change in occupancy during the service life of a building
results in live loads substantially higher than those considered in
design, excessive deflections may result.
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Construction Deficiencies
The following are some of the more common construction
deficiencies:

1.  Formwork is not cambered in cantilevers and large interior
panels, so that even early deflections become obvious.

2. Slabs are supported by props bearing on sole plates that are
of inadequate size to prevent appreciable settlement into the
ground. This causes slabs to deform even before stripping.

3. Construction loading from propping or the storage of
materials during the early life of slabs is often severe enough
to cause extensive slab cracking and hence loss of stiffness.

4. Top reinforcement at supporting elements is often pushed
down during slab construction, substantially reducing its
effective depth, and hence reducing the contribution made to
slab stiffness by continuity at supports.

5. Column pours are sometimes carried too far beyond the slab
soffit. If this extra concrete is not chipped before the slab is
poured, the resulting cold joint in the support region actually
reduces effective depth where it is needed.

ltems 4 and 5 above are of surprisingly common occurrence.
Quite often the top steel over supports is not securely held in place and
is displaced towards the neutral axis, greatly reducing the stiffness at
the support. If the effective depth is 7 in. (175 mm) instead of 8 in. (200
mm), as has been observed, the stiffness is reduced by 23%, with a
resultant increase in immediate and long-term deflections.16

Discussion in the rest of this paper will focus on the very
important ltem 3 above. While Taylor and Heiman8 mentioned
extensive slab cracking and loss of stiffness, phenomena that are
difficult to quantify, the probiem more directly is one of higher initial
deflection and greater creep caused by high construction loading of
concrete at an early age.
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CONSTRUCTION LOADS

Structural formwork and its support system deserve careful
consideration in two respects: (1) from the point of view of loads which
may be applied to the formwork and its props, and (2) from the point of
view of loads which the formwork and the props may apply to the
structure. The second aspect is of primary interest in this paper.

Shored Construction

In the construction of multistory buildings with reinforced concrete
floor slabs, a step-by-step sequence of operations is employed. The
sequence comprises the steps of setting up shoring on the most
recently poured floor, forming the next floor, setting the reinforcement
and concreting the slab. Since the floor below the one being concreted
will usually be between seven and fourteen days old, it is common
practice to leave formwork props in place between that floor and one or
two floors below it. A typical construction cycle using three levels of
shores is illustrated in Fig. 1.

It is convenient in discussing construction loads to express them
as a factor times the sum of self-weight of the floor and the dead load of
the formwork. The term "floor loading ratio" is used for this factor.

Nielsen? was probably the first to give a detailed analysis of the
distribution of load between a system of connected shores and floor
slabs. The method considered the deformation characteristics of both
the slabs and the shores. The maximum load ratio obtained by Nielsen
on a slab assuming three levels of shores was 2.56.

Table 1, reproduced in a slightly abbreviated form from Ref. 17,
shows clearly that all writers on the subject agree that floor loading
ratios during construction usually exceed values of 2. This theoretical
conclusion has been verified by Agarwal and Gardner22 using shores
instrumented with electrical resistance strain gages.

The analyses of floor loads in Table 1 are based on the
assumptions that:

1. The slabs behave elastically,
2. Initially the slabs are supported from a completely rigid
foundation, and,
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TABLE 1: Floor loading ratios!?

Maximum value, converged values in
Author brackest Comment
m=2 m=3 m=4 m=35
Nielsen4 2.17 2.28 Values for floor
2.0A 2.56+ level 2 only
x Timber props
+ Steep props (n=1)
A Observes
Grundy & 2.25 2.36 243 (n=5)
Kabailal8 (2.00) (2.00) (2.00)
Beresford!? 2.25 (2.00)* Obtained for rapid
(2.06)*2.35 2.45 2.50 hardening, normal
(2.32) & slow maturing
concretes
respectively (n=5)
Blakey & 225 23 +Stepwise
Beresford20 225+ construction
Beresford?! 2.2 (n=4)
1.5A A Observed

= number of levels of shoring used
= time in days for removal of lowest levels of shores after concreting top floor
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3. The props supporting the slabs and formwork may be
regarded as a continuous uniform elastic support, the elastic
properties of which may be expressed by a coefficient K,
where K = load intensity that produces unit deformation of the
support.

Grundy and Kabailal8 assumed K to be infinite. Beresford19
used infinite as well as various finite values of K, and found that results
were not appreciably affected. Grundy and Kabailal8 carried out their
analyses assuming constant flexural stiffness for all connected slabs, as
well as flexural stiffness increasing with age because of an increase in
the modulus of elasticity of concrete. It was found that the error
introduced by assuming equal relative stiffness for the floors is not
appreciable.

Fig. 2 shows the analysis of floor loads, according to Grundy and
Kabaila, 18 for a multifioor building using three levels of shores for a 7-
day casting cycle with stripping after 5 days. An infinite value of K and
constant flexural stiffness for all connected slabs are assumed. The
loads carried by the slabs and the shores, in terms of the floor loading
ratio, is indicated in the figure adjacent to the element concerned.
Floors 1, 2, and 3, supported from the ground by stiff shores, cannot
deflect and therefore carry no load; all the load is carried by the shores
directly to the foundation. At an age of 19 days the lowest level of
shores is removed, allowing all three slabs to deflect and carry their
own self-weight. The removed shores are placed on the third floor slab,
and the fourth floor poured. As all the three supporting slabs have
equal stiffness, the weight of the newly poured slab is carried equally by
the three lower slabs.

The maximum load ratio for a slab occurs when the slab reaches
the bottom of the supporting assembly. Although the absolute
maximum load ratio occurs when the shores connecting the supporting
assembly with the ground level are removed, the ratio converges for
upper floor levels. For the same structure considered by Nielsen,4
Grundy and Kabailal8 obtained an absolute maximum load ratio of
2.36, while the converged value for upper floor levels was 2.00.
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Altering the number of shored levels has littie effect on the maximum
load ratio. However, by decreasing the number of shored levels, the
age of the slab at which the maximum ratio occurs also decreases,
producing a more critical condition.

In addition to variations in modulus of elasticity due to concrete
age, cracking of slabs that occurs during construction affects the
distribution of load between slabs in the supporting assembly.
Sbarounis12 reports that incorporating the effects of cracking into the
load distribution factors for the supporting slabs reduces the previously
calculated maximum load ratios by approximately 10 percent.

Blakey and Beresford20 recommended a stepped sequence of
construction in a system of floors and shores as a means of controlling
the construction loads imposed on both the slabs and the props. The
advantages of this method of construction lies in that a young slab is
given more time to develop adequate strength before the application of
construction load from the casting of a new slab directly above.
Reshored Construction

The sequence of construction illustrated in Fig. 1 uses three sets
of forms. Economic considerations usually necessitate the removal of
formwork as soon as possible for re-use. This necessity has given rise
to the widespread practice of reshoring. Fig. 3 illustrates a construction
scheme with two levels of shoring and one level of reshoring.
Reshoring is installed after the shores under a slab and the formwork
held by them are removed and after the slab assumes a natural
deflected shape. At the time of installation reshores carry no significant
load.

Taylor23 recommended a method of slackening and tightening
shores under a floor slab as a means of reducing construction loads on
the connected slabs. Taylor's method is the same in principle as
stripping and immediate reshoring of a slab. Marosszeky24 described
complete release and reshoring of a floor slab, such that the floor
carried its own dead weight at a time (T-1) days, where T is the
construction cycle of floors. This reshoring technique produces less
construction load on the supporting slabs and props, in comparison with
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using undisturbed shores. Table 2, reproduced from Ref. 25, shows
absolute maximum and converged maximum load ratios on slabs and
supporting props for various combinations of levels of shores and
reshores.

It should be noted that construction live loads are not considered
in Table 1 or 2. Hurd26 suggests a minimum construction live load of
50 psf (2.4 kPa) for designing forms. Lasisi and Ng25 have shown that
the consideration of 50 psf (2.4 kPa) construction live load, with the
assumption that such load no longer acts on the freshly poured slab
beyond the end of the casting day, increases the absolute maximum
load ratio from 1.83 to 1.99 (an increase of 9%) in the case of two levels
of shores and one level of reshores. Sbarounis12 accounted for the
construction live load effect by increasing the maximum load carried by
the lowest slab in the supporting assembly. Sbarounis recommended
additional loads, due to a 50 psf (24 kPa) live load, of 55/N and 35 N psf
(2.64 N and 1.68 N kPa) for uncracked and cracked slabs, respectively,
where N represents the total number of levels in the supporting
assembly.

Table 2 indicates that the use of two levels of shoring and 1 level
of reshoring rather than 3 levels of shores, reduces the absolute
maximum load ratio from 2.36 to 1.83, and the converged maximum
load ratio from 2.00 to 1.78. This is advantageous in most situations,
although with reshoring the maximum load ratios come into play at an
earlier age than with shoring, as should be apparent from Figs. 2 and 4.
Table 3 is a compilation of construction loads for Floor 3 which
experiences the absolute maximum load ratio. The construction loads
are compared with the design service loads in the table. It is clear that
the construction loads are more critical than the design loads. Also,
importantly, the construction loads act on concrete that has not attained
the age at which it is supposed to experience the design service loads.



TABLE 2: Theoretical maximum load ratios on floor and
prop for various shore/reshore combinations2

Absolute maximum Converged maximum
‘Joad ratio load ratio
Shore On
+ floor On On On
reshore slab prop floor prop

1+1 1.50 1.0 1.50 1.0
1+2 1.34 1.0 1.34 1.0
1+3 1.25 1.0 1.25 1.0
1+4 1.20 1.0 1.20 1.0
145 1.17 1.0 1.17 1.0
240 225 2.0 2.00 1.0
2+1 1.83 20 1.78 1.11
2+2 1.75 20 1.67 1.17
243 1.61 2.0 1.60 1.21
2+4 1.60 20 1.56 1.25
245 1.55 2.0 1.53 1.24
3+0 2.36 30 2.00 1.34
3+1 2.10 30 1.87 1.37
3+2 1.97 3.0 1.80 1.40
343 1.84 3.0 1.76 1.42
3+4 1.77 3.0 1.72 1.43
345 1.77 3.0 1.70 1.43
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The practice of "backshoring" rather than "reshoring” has been
considered by Scott.26 Backshoring is installed in a fashion which
effectively replaces the original shores without disturbing the slab. This
is usually accomplished by stripping a small area and then placing the
backshores before stripping any additional areas. The load in the
backshores upon installation is the same as it was in the shores
replaced by them. The system acts as though the shoring had not been
removed. Scott26 has pointed out that:

1. Backshoring requires a considerable number of levels of
backshores to avoid overloading the structure.

2. The loads in the backshores may far exceed those in the
shores, so that the density of the backshores may need to be
greater than the density of the shoring.

3. Backshoring causes maximum loads to be applied to many
floors for long periods of time.

CONTROL OF CONSTRUCTION LOADS

Probably the surest way of controlling construction loads, and the
consequent deflections, is by carefully sequencing the operations of
shore removal and reshoring. With a column layout such as shown in
Fig. 5, stringers would normally be run in the short direction at about 4 ft
(1.2 m) on center, supported on shores. Ribs or purlins will then be run
in the orghogonal direction, also at about 4 ft (1.2 m) o/c, supported on
the stringers.

What is suggested here on the basis of successful experience
with flat plate buildings in the New York area?? is that alternate
plywood sheets in both the long and the short direction (shown shaded
in Fig. 5) be supported directly by extra shores (indicated by 'x' on Fig.
5). These latter shores (attached to the plywood, rather than to the
stringers, as the other shores are) may be installed at the time the other
shores are installed, or just before shore removal.

When the time comes for removal of formwork, a day or two after
casting or when concrete strength reaches a certain minimum value, the
regular shores, the stringers, the purlins, and the plywood sheets that



120

AN

)

”_ @L////

J

L

//////

f///%

Sheets 4'x 8'

L

//////

\ Min. 5/ ® Plywood

<

M%

w//////

i

O

/%///

al Shore Paﬂern)

" Each Way

E'o

ring that restricts
at an ea

and resho

al

of shore remov

Sequence

Fig. 5:

rly age.

upported

the slab span left uns



121

are not directly held by the extra shores, can all be removed. However,
before the extra shores and the plywood sheets held by them are
removed, reshores should be installed at about 8 ft (2.4 m) o/c directly to
the concrete slab. The extra shores or the so-called permanent shores
should be removed only after the reshores have been installed.

The above scheme of removing the shores and installing the
reshores does not permit more than 8 ft (2.4 m) of slab span to be left
unsupported at any time until the slab is sufficiently mature. With such
short unsupported slab spans, slab deflections under usual
circumstances cannot assume disturbing proportions, however high the
loading may be during construction, and however immature the slab
may be when it is called upon to support those loads. This is
schematically illustrated in Fig. 6 from Ref. 28.

Gardner and Chan29 calculated the slab load ratios for the most
heavily loaded (3rd floor) slab of a multifloor building, using a
construction schedule that employed 3 levels of shores or
shorefreshore or shore/preshore combinations. The preshored load
history is shown in Fig. 7 and compared with the load histories for
shored and shore/reshore methods of construction.

The deflection control consideration applies with the use of flying
forms also. Figure 8 shows a reinforced concrete slab supported on
reinforced concrete columns spaced at 20 ft (6.1 m) in both directions.
With such a column layout, an 18 ft (5.5 m) wide form table would
normally be used. However, in that case, as soon as the flying form is
removed, 18 ft (5.5 m) of slab span would be left unsupported. If
deflections are of concern, two 8 ft (2.4 m) wide form tables, with a filler
strip of formwork in between, may be used instead. With the narrower
form tables, even when they are removed, no more than 8 ft (2.4 m) of
slab span would be left unsupported. Admittedly, two 8 ft (2.4 m) wide
form tables with a filler strip of formwork are significantly more
expensive than a single 18 ft (5.5 m) wide form table. The added
expense has to be weighed carefully against any advantage that is to
be gained in terms of reduced deflections.
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SUMMARY AND CONCLUSIONS

The sometimes excessive long-term deflection of flat plate and
other reinforced concrete slab systems has been a recurring problem
through the years. This report contends that long-term deflection
problems in reinforced concrete slab systems are more often than not
caused by construction deficiencies. A common example of
construction deficiency is the incorrect placement of top reinforcement
which plays an important role in minimizing long-term deflections. The
aspect of construction that is given primary attention in this paper has to
do with the sequence of shoring, form removal, and reshoring. It is
pointed out that the construction loads on a slab system may be higher
than the full service loads for which it is designed. These loads, acting
on immature concrete which has a low modulus of elasticity, cause
large immediate deflections. These deflections increase with time due
to creep. Concrete loaded at an early age suffers larger creep
deformations than concrete loaded at later ages. Although parts of the
construction loads may be sustained for only a few days and then be
removed, they still have an adverse effect on slab deflections, since
creep is not a totally reversible phenomenon.

The loads on a slab during construction can be controlled by
adjusting the number of levels of shores and reshores that are used
(Table 2). However, in general, the loads can be minimized only by
allowing the slab to deflect at an earlier age.

Some direct measures aimed at eliminating long-term deflection
problems of reinforced concrete slab systems are outlined in this paper.



126

REFERENCES

1.

10.

Scanlon, A., "Excessive Slab Deflection - A Serviceability Failure,"
Journal of Forensic Engineering. Vol. 1, No. 1, 1987, pp. 21-29.

Mayer, H., and Rusch, H., "Building Damage Caused by Deflection
of Reinforced Concrete Building Components," Deutscher
Ausschuss fur Stahlbeton, Heft 193, Berlin, 1967, 90 pp.

ACl Committee 435, "Observed Deflections of Reinforced Concrete
Slab Systems and causes of Large Deflection," Deflections of
Concrete Structures, Special Publication SP-86, American
Concrete Institute, Detroit, 1985, pp. 15-61.

Nielsen, K. E. C., "Loads on Reinforced Concrete Floor Slabs and
Their Deformations During Construction," Proceedings No. 15,
Swedish Cement and Concrete Research Institute, Stockhoim,
1952, 113 pp.

Blakey, F. A., "Australian Experiments with Flat Plates,” ACI
Journal, Proceedings V. 60, No. 4, April 1963, pp. 515-525.

Jenkins, R. A. S., Plowman, J. M., and Haseltine, B. A.,
"Investigation into the Cause of the Deflection of Heated Concrete
Floors, Including Shrinkage," The Structural Engineer, London,
Vol. 43, No. 4, April 1965, pp. 105-117.

Greymayer, H. G., and McDonald, J. E., "Short- and Long-time
Deflections of Reinforced Concrete Flat Slabs," Technical Report
C-70-1, U.S. Army Engineer Waterways Experiment Station,
Vicksburg, Mississippi, February 1970, 9 pp. plus 4 tables and 17
figures.

Taylor, P. J., and Heiman, J. L., "Long-term deflection of Reinforced
Concrete Flat Slabs and Plates," ACI Journal, V. 74, No. 11, Nov.
1977, pp. 556-561.

Bortemark 1., "Deformation of Gypsum Wallboard Partitions Erected
between Concrete Floors," Chalmers University of Technology,
Goteburg, Sweden, 1973, 165 pp.

Jenkins, B. R., "Tests on a Flat Plate Floor," Civil Engineering
Transactions, The Institution of Engineers Australia, V. CE16, No.
2, 1974, pp. 164-167.



11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

127

Branson, D. E., Deformation of Concrete Structures, McGraw-Hill,
New York 1977, 546 pp.

Sbarounis, J. A., "Multistory Flat Plate Buildings--Construction
Loads and Immediate Deflections," Concrete International, Vol. 6,
No. 2, February 1984, pp. 70-77.

Sbarounis, J. A., "Multistory Flat Plate Buildings--Effect of
Construction Loads on Long-Term Deflections," Concrete
International, Vol. 6, No 4, April 1984, pp. 62-70.

Sbarounis, J. A., "Multistory Flat Plates--Measured and Compared
One-year Deflections," Concrete International, Vol. 6, No. 8, August
1984, pp. 31-35.

Scanlon, A., and Ho, E., "Analysis of field Measured Deflections,
Scotia Place Office Complex, South Tower," Structural
Engineering Report No. 125, University of Alberta, Edmonton,
Canada, December 1984, 23 pp.

Committee 25 of the Council on Tall Buildings and Urban Habitat,
"Creep, Shrinkage, and Temperature Effects," Chapter CB-10,
Monograph on Planning and Design of Tall Buildings, Vol. CB,
American Society of Civil Engineers, New York, 1978, pp. 425-
500.

Wheen, R. J., "An Invention to Control Construction Floor Loads in
Tall Concrete Buildings," Concrete International, V. 4, No. 5, May
1982, pp. 56-62.

Grundy, P, and Kabaila, A., "Construction Loads on Slabs with
Shored Formwork in Multistory Buildings," ACI Journal,
Proceedings V. 60, No. 12, December 1963, pp. 1729-1738.

Beresford, F. D., "An Analytical Examination of Propped Floors in
Multi-story Flat Flate Construction," Constructional Review, North
Sydney, V. 37,No. 11, November 1964, pp. 16-20.

Blakely, F. A., and Beresford, F. D., "Stripping of Formwork for
Concrete in Buildings in Relation to Structural Design," Civil
Engineering Transactions, Institution of Engineers Australia, V.
CE7, No. 2, October 1965, pp. 92-96.

Beresford, F. D. "Shoring and Reshoring of Floors in Multistory
Buildings," Symposium on Formwork, Concrete Institute of
Australia, North Sydney, April 1971, 14 pp.



128

22.

23.

24.

25.

26.

27.

28.

29.

Agarwal, R. K., and Gardner, N. J., "Form and Shore Requirements
for Muitistory Flat Slab Type Buildings," ACI Journal, Proceedings
V.71, No. 11, Nov. 1974, pp. 559-569.

Taylor, P. J., "Effects of Formwork Stripping Time on Deflections of
Flat Slabs and Plates," Australian Civili Engineering and
Construction, Melbourne, V. 8, No. 2, February 1967, pp. 31-35.

Marosszeky, M., "Construction Loads in Multistory Structures," Civil
Engineering Transactions, Institution of Engineers Australia, V.
CE14., No. 1, April 1972, pp. 91-93.

Lasisi, M. Y., and Ng, S. F, "Construction Loads Imposed on High-
Rise Floor Slabs," Concrete International, V. 1, No. 2, February
1979, pp. 24-29.

Scott, W. T., "Reshoring Multistory Concrete Frame Structures,"
Proceedings, International Conference on Forming Economical
Concrete Buildings, November 1982, pp. 17.1-17.16.

Cantor, I. G., and Rizzi, A. V., "Reshore and Preshore Procedures
for Flat Plate Slabs," Proceedings, International Conference on
Forming Economical Concrete Buildings, November 1982, pp.
18.1-18-12.

Fu, H. C., and Gardner, N. J., "Effect of High Early-Age
Construction Loads on the Long Term Behavior of Slab
Structures," Properties of Concrete at Early Ages, Special
Publication SP-95, American Concrete Institute, Detroit, 1986, pp.
173-200.

Gardner, N. J., and Chan, C. S., "Comparison of Preshore and
Reshore Procedures for Flat Slabs, "Proceedings of the Second
International Conference on Forming Economical Concrete
Buildings, Special Publication SP-90, American Concrete Institute,
Detroit, 1986, pp. 157-174.



Comparison of Fixed and Rotating Crack Models

in_Shear Design of Slender Concrete Beams

H. Kupfer
Professor for Structural Engineering

H. Bulicek
Research Assistant

Technische Universitdt Minchen, Germany

ABSTRACT

The shear carrying behavior of slender concrete beams is
characterized by the inclination of the compressive struts which is
influenced significantly by aggregate interlock in the crack planes.
This paper focuses on the comparison of the states of stress and strain
in webs of slender beams with vertical shear reinforcement being
derived by assuming on the one hand a fixed crack inclination leading
to aggregate interlock and on the other hand a variable crack
inclination not leading to any stress transfer across the shear cracks.

NOTATION LIST

0 inclination of shear cracks

0 inclination of principal compressive stress ¢, (or inclination
of struts respectively)

¥4 inclination of overall principal tensile strain of cracked web

¥ inclination of overall principal compressive strain of cracked
veb

a declination between 0 and ¢, a = 0 - ¢

€x overall axial strain of cracked web or of beam respectively

€y overall vertical strain of cracked web

7xy  overall shear strain of cracked web

€1 overall principal tensile strain of cracked web

€9 overall principal compressive strain of cracked web

€c principal compressive strain of web concrete parallel to gy
(corresponding to €5 in /2/)

€u ultimate compressive strain of web concrete, e, = -0.002

fey ultimate compressive stress in the web concrete at a strain of
€u

71,2 associated principal stresses in the web concrete, |sa| >> |oy]
fy yield strength of shear reinforcement, f, = 500 MPa

Es modulus of elasticity of shear reinforcement, Es = 210 000 MPa
E¢ modulus of elasticity of concrete
v shear crack displacement parallel to crack plane
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shear crack opening perpendicular to crack plane

crack distance, measured perpendicular to crack plane

width of web

inner lever arm

acting shear force in the web

shear stress ratio, v = 2Vg/(by-z-f¢2)

poisson’s ratio of concrete, g = 0.2

geometric shear reinforcement ratio (corresponding to s in /2/)
mechanical shear reinforcement ratio, w = 2p-fy/fcs

=

[SER=Ta QfNO“Q’Q

tensile stresses and tensile strains are defined as being positive

INTRODUCTION

Once shear cracks have occured the shear carrying behavior of webs
in slender concrete beams can be characterized by the well known truss
model consisting of top and bottom chord, shear reinforcement ties and
diagonal concrete compressive struts (Fig. 1).

yYxy Ex, top
\\
I~ _ z
_ 2
/,, 1 9\ *_
/// ; Ex
3] // I / 2 +
A el 1
€x, bottom
~ o - €x-z+cotO

Fig. 1. Notations of Strains

This paper deals with the calculation of the states of stress and
strain in ultimate limit state of cracked webs in slender concrete
beams with vertical shear reinforcement giving prominence to the role
of aggregate interlock.

THEORETICAL FOUNDATION

Rotating crack model
The rotating crack model is based on an uniaxial concrete
compression field where no stresses due to aggregate interlock act in
the crack planes. Cracks are supposed to adjust parallel to the
resulting strut inclination (¢ = #) and the inclination of the overall
principal compressive strain of the web is supposed to coincide with
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the inclination of the principal compressive stress in the web concrete
(@=0-v=0).

_p‘f),

Fig.2. State of stress in web for rotating crack model

The kinematic condition of strains with regard to the rotating
crack model can be obtained by using one of the following principles 4
or # both leading to identical results:

4.)  Principle of Hinimum of Internal Work

By the consideration of the respective internal work of stirrups,
chords and uniaxially loaded web concrete the minimum of the overall
internal work of the web can be found in terms of the inclination # of
the uniaxial compression field in the web concrete. Thereby the
following equation for # is obtained in reference /1/ by assuming
linear elastic behavior of the material:

3 g - Zex - DNObx - B (1 4 f) =
tan3 4 T vey tan 4 Toy (1 - tant §) =0 (1)

where the symbols in equ. (1) denote

n ratio Eg/E¢
Tey stresses in stirrups
Tex stresses in tension chord reinforcement
Obx stresses in concrete of compression chord
To acting shear stress in web, 7, = Vs/(by-2)
- n .. .
so that 5955———£9£ is identical to X .
ey in ¢ cos 0
n N . . -
and 270 g identical to —fc 51V COS O
Tey €y

Hence equ. (1) changes into:

fand § - €x tan g+ Lo SR OcOs 0y o0y gy -
€y €y
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and by transformation into:

tan? § = &x - €c | (2)
fy' fc

B.)  Kinematic Assumption of Coincidence of (rack Inclination and
Inclination of Uniazial Concrete Compression Field without (rack
Displacement parallel to the Crack Plane

Equ. (2) also is obtained by fulfilling the kinematic assumptions
that the inclination ¢ of shear cracks coincides with the resulting
inclination 4 of the uniaxial concrete compression field and
furthermore that the resulting opening of shear cracks adjusts
perpendicular to the crack plane (v = 0). The corresponding kinematic
condition is illustrated by Mohr’s strain circle assuming e; = ¢; and

simultaneously ¢, = 4.

‘y/z
Yxy
2
—~ —
€C=€2 Ex Ey 81 €
I‘———l————————‘
€4~ €c €y - €

Fig. 3. Mohr‘s strain circle for rotating crack model

From Fig. 3 follows
7/2 = (ex - €c) EE%_P and  7/2 = (ey - €) tan 0§
so that equ. (2) is obtained again.

By assuming the following parabolic stress strain relationship for
the concrete with an ultimate strain of ¢, at a peak stress of fc,

— _ - y _ ~0O2 _ 4
€c = €y (1 V]. 09 ) vhere 09" = fc_2 = m (3)
the shear force ratio v results as

v = sin 24 {1 - [1 - (fzu_(fv_t%:izag)]z} (4)

where the condition tan? § ¢ &~ Cu

Ey - Eu
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has to be observed since the term within brackets must be positive.
The resulting shear reinforcement ratio v is obtained from
w=vtan f (5)

as the rotating crack model is based on an wuniaxial concrete
compression field.

Fized crack model

The model described in this paragraph is accurately explained in
reference /2/. Models following similar assumptions are published for
instance in referencei/3/, /4/, |5/ or /6/.

The principal difference to the rotating crack model is the fact
that the inclination y of shear cracks in gemeral does not coincide
with the resulting inclination # of the principal compressive stresses
in the web concrete since cracks are considered to be fixed once they
have occured (y # ). As a consequence a crack displacement parallel to
the crack plane occurs (v # 0) and the inclination of the overall
principal compressive strain of the web declines by the angle a to the
inclination of the principal compressive stress in the web concrete
(42 # 0 - a # 0). Hence aggregate interlock has to be taken into
account to provide stress transfer across the shear cracks. Besides, a
biaxial state of stress develops in the web concrete where the
principal stress o¢; is tensile or compressive and of subordinated
signification compared to s,.

_p.fy

Fig. 4. State of Stress in web for fixed crack model

The overall strains ey, ey and 7xy of the web are composed of the
corresponding components of nonlinear concrete deformations ¢, and
-4 ec_as well as smeared crack displacement v/a and smeared crack
opening w/a. By neglecting the influence of the subordinated lateral
stress o; upon the lateral strain of the struts the following equations
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are obtained in reference /2/:

€x = €c (cos? @ - p sin? @) + g sin? ¢ - % sin 2¢ (6)

€y = €c (sin? § - p cos? f) + % cos? p + %E sin 2¢ )

Txy = g sin 2y + % cos 2¢ - 2 EEEQP (1 + p sin? @ - cos? §) (8)

Thereby v and w are governing the stresses in the crack plane according
reference /7/.

The resulting inclination ¢, of the overall principal compressive
strain of the web can be derived from:

tan 2y = —XY— (9)

€y - €x

The shear reinforcement ratio v is obtained from
v=vtan - £ o (10)
Te2

since the fixed crack model implies a biaxial stress state in the web
concrete.

COMPARISON OF NUMERICAL RESULTS

The required shear reinforcement ratio ¢ is derived for both
models in terms of the shear force ratio v where the overall axial
strain ey is varied in the range of -0.001 < ex < +0.001. For the fixed
crack model the declination e between the inclination of principal
compressive stress in the web concrete and the associated inclination
of overall principal compressive strain of the web is evaluated. The
resulting ratio of principal stresses in the web concrete is
illustrated.

The values for e, and a are considered as input data with an
amount of ey = 0.0025 and crack distance a = 150 mm. However, a control
of ey is considered with respect to a minimum shear reinforcement for
the fixed crack model in case of ex = +0.001 (Fig. 7) since the
vertical strain has considerable influence upon the resulting shear
capacity at fixed crack inclinations and positive overall axial
strains ex. The tension stiffening of stirrups is neglected.

The stress-strain-relationship of the web concrete is assumed
according to equ. (3). A corresponding poisson’s ratio of p = 0.2 is
considered.

It turns out that aggregate interlock has considerable influence
upon.the _amount_of the required shear reinforcement in the web.



135

Referring to the activation of aggregate interlock the following
inequality for the crack inclination ¢ has to be fulfilled:

tan? p 4 - fc (11)

y C

In case of tan? y greater than the given term aggregate interlock makes
possible flatter strut inclinations relative to crack inclinatioms.
Else aggregate interlock takes an arising effect to the struts relative
to crack inclination.

€x=-0,001, €y=0,0025, a=150mm ex=0, €y=0,0025, a=150mm
_2p-fy _2pty
w= ch w= ch
1.0 1.0+ —
——\P=9
— Q=450
—— =350 /
L
05 05 7 .
7,
7/,
///
920,
027 ~Te2
V t
05 10 v
a=0-¢, az6-¢,
12° 120
10° 10°
8° 80
6° //- 6° /,,: =
4° // 40 //
— g T,
20] . L ~N
= / / vV 2 r’/’/
g0 %" 10 el 708 oY
-4° / - o .4/
-6°. / _g° ! /
0. ‘ ol'
-8 / -geof!
-10° _100:
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=% 10 ' } = 0 Y
-01 ' : o1y 7 08 10
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-03 =t
¢, 0;
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Fig. 5 Required shear reinforcement  Fig. 6. Required shear reinfor-
ratio for ex = -0.001 cement ratio for e¢x = 0
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Fig. 7. Required shear reinforcement ratio for ex = +0.001

However, in the range of medium and high acting shear stresses the
fixed crack model is mostly leading to more unfavourable results with
regard to the shear reinforcement compared to the rotating crack model.
On the other hand even more favourable results can be achieved by the
fixed crack,model in, case of ;very f1at crack inclinations %see €x = 0
and p = 200°). The more favourable results according to the fixed crack
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model in the range of low shear stresses result from small principal
tensile stresses in the web concrete. However, principal tensile
stresses due to fixed cracks turned out to be always below concrete
tensile strength so that an occurence of new declined cracks can not be
theoretically proved as long as tension stiffening of stirrups is
neglected with regard to the stresses in the web concrete.

In the range of low shear stresses the inclination of principal
compressive stresses in the web concrete turns out to be significantly
smaller compared to the inclination of the overall principal
compressive strain of the web (a < 0) where the opposite effect is
stated in case of medium and high shear stresses (a > 0).

The decreasing influence of overall axial temsile strains as well
as the increasing influence of overall axial compressive strains in a
beam upon the shear capacity is demonstrated by the results of both
models.

The inclination of fixed cracks turns out to be a main source for
the action of aggregate interlock and in turn for the resulting amount
of shear reinforcement. Steep and fixed cracks prove to have a
decreasing effect upon the resulting amount of shear reinforcement in
the range of small shear stresses and an increasing one in the range of
high shear stresses.

SUMMARY AND CONCLUSIONS

In this paper a comparison of fixed and rotating crack models has
been developed for the shear design of slender concrete beams.

The rotating crack model turned out to be a special case of the
fixed crack model if the crack inclination coincides with the
inclination of the principal compressive stress in the web concrete and
the latter in turn coincides with the inclination of the overall
principal compressive strain of the web.

Aggregate interlock has been considered with regard to the fixed
crack model. The ability of its flattening or even arising effect upon
the strut inclination relative to crack inclination has been
theoretically shown.

Principal tensile stresses in the web concrete occuring at fixed
crack inclinations turned out to be too small to cause new declined
cracks at least if tension stiffening of stirrups is not considered
with regard to the tensile stresses in the web concrete.

The results according to the rotating crack model mostly are on
the unsafe side compared to the fixed crack model if fixed and steep
crack inclinations have to be taken into account.
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"CLEAN” PHYSICAL MODEL OF CRACKED REINFORCED
CONCRETE PLANE ELEMENT

Peter LENKEI
Professor, Pécs Polytechnic, Hungary

1. Introduction

The predominant trend in current reinforced concrete modeling is to describe the
behaviour of cracked reinforced concrete in its real complexity.

Reference could be made to the works of Cohn and Ghosh [4], Karpenko [5], Collins
and Mitchell [6], Walraven [7], Vintzeleou and Tassios [8], Gambarova [ 10]. Naturally,
number of parameters in such a complex (or general) model can be integrated from
classical material laws and from interface problems (concrete to concrete friction,
aggregate interlock, kinking, concrete and steel interaction, etc.) in a crack.

Some of these problems have been known for a long time, e.g. Morsch [ 1] has described
the “tension stiffening” effect, when concrete under tension between two cracks
“increases the stiffness” of the tensile steel, the existance of torsion moments along the
yield lines of reinforced concrete slabs was proved in [3].

Research in this field has gained a special importance by the big number of highly
responsible and complex structures, like nuclear reactor vessels and tubular reinforced
concrete columns in of f-shore platforms.

Recently, the actuality of this trend has been increased by application of high-yield
reinforcing bars with limited ductility and high strength concrete.

Both the theoretical and experimental methods, describing the real behaviour of
reinforced concrete slabs in cracked state are complex. They give very good
estimations of general load bearing capacities, resulting from different physical
phenomenae. To evaluate these phenomenae, to clear up their interdependence one
must know the basic, “clean” or "naked” model of slabs, from which the alterations due
to these phenomenae can be taken into account. This paper is aimed to produce such a
“clean” slab model, like the naked bar is for tension stiffening.
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Properties of a reinforced concrete slab (resistance, stiffness) are different direction by
direction. It is due to the fact that the reinforcement is not a uniformly distributed
layer, it is placed in the concrete as a series of discrete, definitely oriented bars. The
ultimate capacity of a “clean” reinforced concrete slab of a certain depth and given
qualities of constitutive materials depends on the cross sections of the differently
oriented bar series and their ratio of steel percentages, the "orthotropy factor” in the
section investigated.

2.1. Symbolsused

Symbols are shown in Fig 1.and are as follows:

ag — crack width, mm

i,orxandy — directions of steel bars

I — equivalent length in the tensile reinforced concrete layer, mm

lqandlg — equivalent length along the tensile steel bars, x and y direction
respectively, mm

Ser —crack spacing, mm

o — angle between yield line and steel bars of y direction, grad

81, 8y, 83 — factors, being ousted in calculation

&g and vq — normal and shear strains in the steel bars of i direction in the
crack

A — orthotropy factor in the reinforced concrete slab

pxand py — steel percentage in x and y directions respectively

040r ogando,,  —normal stresses in steel bars of 7, orx and y directions, MPa

oy and =g, — resultants of normal and shear stresses in the steel bars being in
the crack, MPa

T — shear stress in steel bars of i directions, MPa
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Fig.1. The tensile concrete layer

22. Assumptions

The following assumptions were made and they are divided into two groups. The
assumptions of the first group are geometrical and are made only for sake of simplicity
of the investigations. The assumptions of the second group are mechanical and they
create the “clean” or “naked” model of the reinforced concrete slab.

2.2.1.Geometrical assumptions

(i) Instead of areal two way slab, only its tensioned layer, with the reinforcement in
the middle are investigated (Fig. 1.).

(i) Steel bars are located only in two (x and y) directions in the slab.

(iii) _The stresses in the steel bars ¢ ; are derived in the crack (Fig. 2.).

(iv) Cracks are straight and parallel with each other.
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Fig. 2. Stresses in the tensile concrete layer

2.2.2.Mechanical assumptions

(i) Theinitial stage of plastic stress state is investigated, assuming ideal
elastic-plastic steel behaviour.

(ii) Principal directions of stresses and strains coincide.

(iii) Reinforcing bars remain straight and preserve their original directions,

consequently no shear stresses and shear deformations will occur in the bars:

Tsi=0
................................... 1
'Ysi=0 } ( )
(iv) Thecrackdirection is one of the principal directions [2], consequently:
o= O e (2)

(v) The compatibility of deformations in the crack for steel bars of both (x andy)

directions is fulfilled.
(vi) The borders of a crack remain parallel and to fulfill assumption (ié7 ) there is no

relative movement between the crack borders along the crack.

(vii) The steel bar normal deformations between the crack borders are neglected, due
to the fact of:

T (3)
(viii) The steel bar normal deformations in the crack consist of the slip deformations
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(relative displacements between steel bars and embedding concrete) only ,

which are accumulated into the crack from the two half crack spacings (scr / 2).
(ix) This slip is assumed to be linear function of the steel stresses in the crack and

does not depend on the steel directions:

(x) Theslipisdecreasing with increasing distance from the crack, therefore an

equivalent length Is<scr/2 should be established.
(xi) Twodifferent linear expressions of the equivalent length are assumed (Fig. 3.):

— the equivalent length in the tensile layer is proportional to the crack spacing and
does not depend on steel directions (Fig. 3/a):

— the equivalent lengths in the tensile steel bars are proportional to the crack spacing
and does not depend on the steel directions (Fig. 3/b):

L=l =838 « oo (6)

Fig. 3. Strains in the tensile concrete layer.

a.equivalent length of slab

b. equivalent lengths of bars
2.2.3 Discussion of the assumptions

The geometrical assumptions are generally in agreement with the mechanical
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behaviour for a cracked slab element, except the node (yield-line intersections) areas.
Some of the physical assumptions should be discussed in details.
According to the assumption (ii7) no kinking of the reinforcements occur.

According to the assumption (iv) and (vi) no aggregate interlock and friction along the
crack occur.

According to the assumption (vii) and (viii) the deformation capacity of the slab is
underestimated.

Assumption (ix) probably overestimate the slip deformations of bars, crossing the crack
by angles near to O°. Probably a non-linear (e.g. parabolic) slip-steel normal stress
function would be more realistic.

Neither of the two expressions in assumption (xi) were proved experimentally.
Probably expression (5) is more close to the reality, expression (6) is a very sewere one,
and the reality lies between them.

3. Applications of the “clean” model.

3.1.Assuming the crack direction is the principal direction and applying
expression (2)

Toq =Ogx" Px - COSQ-SIN & — 0y pySiN a-COSa =0
we get
Osx "Px = Osy “ Py
or

R S (7)
Ty B

where ) is the orthotropy factor.

But in the plastic range, where both reinforcements yield, it is possible only for p, =p,,
i.e.for isotropic slab, when x = 1.

Consequently, from the stress condition in a “clean” slab model in case of isotropic
reinforcement will be the crack direction the principal direction only. This was proved
experimentally in [3]. Thus, the mechanical assumption (iv) is valid for isotropic
reinforcements only.

3.2. According to the mechanical assumptions (v) - (xi) and expressions (4) and (5) the
crack width acr should be constant and equal:

asi
Aer=2-lg-e5i =2-82-Ser- 61 T =const
S
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and we get

Og =CONMSE ottt et e e (8)
Consequently, from the compatibility of steel bar deformations in the crack and from
the expression (7) in a “clean” slab model in case of isotropic reinforcement will be the
crack direction the principal direction only, using expression (5).

3.3. Let us have the same assumptions as in paragraph 3.2, but instead of expression
(5) use expression (6). The constant crack width along the crack will be:

Ao =2l ey COSu = 2 -1y £y STNO = const
and

Osx sy .
@or=2-B3 Serdy - €OS@ =283 Ser By -E;)—,-Sma = const
S

expressing one of the steel bar stresses from (7)

0,
s

Osx =y~ Osy
and substituting to the expression of a , we get
SIH & e e 9
Bo_sine s (9)
x  cos «
Consequently, using the more severe expression (6), the crack direction for isotropic

slab will be the principal direction in case of « =45°only.

4. Summary

A "“clean” model for reinforced concrete slab element was introduced like the "naked”
bar for tension stiffening. Several assumptions were made, and the effect of real
phenomenae (kinking of reinforcement in the crack, aggregate interlock, friction, etc,)
can be estimated by evaluating the divergence from these assumptions. Some results in
applaying the clean model were shown, especially with regard to the conditions of the
coincidence of the crack direction and of one of the principal directions.

References

1. Morsch, E.: Concrete-Steel Construction.McGraw-Hill, New York 1909. pp.368.

2.Gvozdev, A A.: Method of Limit Equilibrium, Applied to the Design of Reinforced
ConcretesStructuresy (insRussian)sEngineering Collection of the Soviet Academy of
Science. Vol. V. No. 2 (1949) Moscow.



146

3. Lenkei, P.: On the yield condition for reinforced concrete slabs.Arch. Inz. Ladove;j,
T.XIII.Z.1, Warsaw 1967. pp.5-11.

4. Cohn, M.Z. - Ghosh, SK.: Ductility of Reinforced Concrete Section in Bending.
“Inelasticity and Non-Linearity in Structural Concrete” Waterloo, 1973 pp. 111-146

5. Karpenko, N.J.: Theory of Deformations in Cracked RC Structures (in Russian).
Moscow, Stroizdat, 1976. pp. 208

6. Collins, M.P. - Mitchell, D.: Shear and Torsion Design of Prestressed and
Non-Prestressed Concrete Beams.PCI Journal, Sept-Oct. 1980. pp. 32-100.

7. Walraven, J.C.:The Behaviuor of Cracks in Plain and Reinforced Concrete Subjected
to Shear. "Advenced Mechanics of Reinforced Concrete” IABSE Colloquium Delft,
June 1981.

8. Vintzeleou, E. - Tassios, T.P.: Mechanism of Load Transfer along Interfaces in
Reinforced Concrete: Predicction of Shear Force vs. Shear Displacement Curves.
Politechnico di Milano Studi e Ricerche - Vol. 7. 1985. pp. 121-161.

9. Lenkei, P.: Behaviour of Cracked RC Plane Elements in Biaxial Bending (in
Hungarian). Epités &s Epitészettudomédny XVIII/1-2, Budapest 1 986. pp-51-57.

10. Gambarova, P.G.: Modelling of Interface Problems in Reinforced Concrete.
"Computational Mechanics of Reinforced Concrete” IABSE-ASCE-CEB-RILEM-ICI
Colloquium Delft, 1987. pp. 1-16.



Abstract from the Supporting Document of Eurocode 2 on non linear analysis (*)

Franco Levi, Politecnico di Torino, Turin, Italy

Why non linear analysis

The application of non linear analysis to reinforced (or prestressed) concrete structures -
defined as a procedure which takes into account the influence of the elements’ non linear
deformation properties, independently of the non linearity due to second order effects - is
the logical corollary of the semi-probabilistic limit state approach. Indeed, to realize a
correct probabilistic calculation, itis unconceivable toignore the existence of the correlations
between the basic variables involved. For example, for the verification of a single section,
it is commonly acknowledged that the best representation of the stress-strain relationships
should be adopted. Likewise, for the passage from the actions to the corresponding internal
forces and moments in the statically indeterminate field, it should be recognized that it is
essential to carefully consider the non linearity which characterizes the response of the
structural elements of a structure. If, in one of the two cases considered above, such aspects
are neglected, the fundamentals of probabilistic analysis are obviously altered. Practically,
an approach of this kind would be equivalent to an extension of the linear elastic hypothesis
until the ultimate limit state and to the assumption of identical laws of statistical distribution
of causes and effects. This is the reasoning which underlies the method of permissible
stresses, which is now unanimously regarded as obsolete. Theoretical and experimental data
actually demonstrate that the safety margins provided by the linear hypothesis may
sometimes be excessively conservative or, in other cases, slightly scarce. Needless to say,
this is unacceptable from the point of view of the designer.

Moreover, it is not difficult to find other aspects of linear analysis which lead to
questionable results. For example, in a statically determinate structure, the failure of a single
section results in the complete collapse of the entire structure, or at least of an entire element;
conversely, in a ductile statically indeterminate construction, after the yielding of one
section, an important reserve of resistance is still available. This substantial difference is not

(*) The Supporting Documents of Eurocodes are commentaries to the main text intended to supply
explanations, discussions on the field of application, examples and so on. The aim, in fact, is to
help designers gain a clearer understanding of the contents of the European Codes. The role of
these commentaries is particularly important for the most innovative chapters, such as, for
instance, the one devoted to non linear problems. The part of the Document reproduced here was
written during a sabbatical stay in Italy of Mircea Cohn and the author was lucky enough to
discuss with him its basic concepts. It was therefore deemed suitable to introduce, in this volume
dedicate to him, something which was the fruit of his friendly collaboration.
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evident in the linear approach. Likewise, it is well known that, for reinforced concrete
constructions, the evaluation of imposed deformation effects by a linear analysis leads to
severe errors in the appraisal of reliability at the ultimate limit state and to questionable
results even in the serviceability domain. Similar uncertainties arise in the calculation of the
statically indeterminate effects of prestressing and the dimensioning of regions in which the
internal forces and moments change their sign (e.g., zones of zero moment in beams).

We may then state the main reasons which justify the use of the non linear approach as
follows:

a) Non linear analysis is the best tool to correctly describe the structural response. As such,
it shall be considered as the reference method for controlling the results obtained with
different approaches based on a less accurate representation of physical reality (e.g.,
linear calculation with or without redistribution, plastic approach);

b) Taking advantage of the redistribution of internal forces and moments, it is possible to
exploit the reserves of strength which very frequently exist in certain parts of a structure,
especially if subjected to a variety of loading conditions, so as to attain very substantial
economies in terms of materials and simplification of the design (form of the sections,
detailing). Moreover, the non linear approach makes it to possible to express a reliable
judgement on the structural response in the presence of abnormal loading or strength
conditions;

¢) Other fields in which non linear analysis represents the most satisfactory approach include
the evaluation of the residual bearing capacity of damaged structures and the interpretation
of collapse;

d) The same applies to the appraisal of imposed deformations and prestressing effects
outside the limits of applicability of the linear theory for uncracked members;

¢) The non linear approach clearly reveals the risks of brittle failure, for example when a
calculation based on the allowable stresses method requires a large amount of steel at the
critical sections;

f) As we shall see below, a number of drawbacks inherent in the adoption of a non linear
model (lack of validity of the superposition principle and, hence, the need to consider a
large number of loading conditions, complexity of the calculations, etc.) are, in actual
fact, less severe than may be expected at first sight.

In any case, the non linear method implies a number of real difficulties which can only
be overcome through specific devices. The obstacles may even result in a restriction of the
field of application.

The most severe difficulty lies in the impossibility to apply the superposition principle
and the related need to consider all the different loading combinations and arrangements
separately. In the case of complex constructions, such as, for instance, off shore structures,
this could lead to a really prohibitive number of verifications. In reality, a careful
examination of the problem shows that, in a large number of cases, significant conditions
are relatively few and it is possible to identify the most interesting critical ones by an
approximate linear analysis. This conclusion has been confirmed by the introduction in the
Eurocodes of a set of simplified load combinations, which apply primarily to buildings, but
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are useful in other fields too. Moreover, for very large structures, the non linear analysis of
sub-structures isolated from the whole is often more significant than a complete linear
analysis, which might give rather different results depending on the various possible
idealizations adopted. This applies particularly to non sway structures.

As for the practical difficulties of the analysis (an unsurmountable drawback until some
years ago), it is now possible to state that the general use of numerical processes has
significantly reduced the disadvantages of the non linear approach.

Additional important requirements of linear analysis include the necessity to take into
account the history of the loading conditions (sequence of application of the actions) and to
adopt a probabilistically reliable description of the mechanical properties of the constitutive
elements of the structure. These aspects will be discussed in the paragraph devoted to the
safety problems. However, for the time being, we can foresee that the solution will consist
in adopting conventional hypotheses and carefully defining their field of validity.

Field of application and limits of validity

Theoretically, the field of application of linear analysis has no limits, in that all structures
(with only the exception of very slender ones, where the bearing capacity is strongly reduced
by second order effects) undergo inelastic redistributions of internal forces and moments
before the attainment of the ultimate limit state. In reinforced concrete, the non linear
response due to cracking often has a significant influence even in serviceability conditions.

In actual practice, however, the field of application is restricted for theoretical as well for
practical considerations.

We have already mentioned the limitations associated with the non-applicability of the
superposition principle, which restricts the use of the method for large structures subjected
to multiple loading conditions. Other restrictions to the possibilities of application derive,
even for monodimensional members, from the lack of reliable experimental data on the laws
of deformation in the presence of all possible combinations of internal forces and moments.
The only case that is really well known is the bending moment-normal force combination.
Conversely, almost nothing is available on the influence of shear and torsion, were the
difficulties, already presentin the linear field, increase significantly beyond the elastic limit.
Obviously, itis even more difficult to apply the non linear method when the problemrequires
the definition of a response of tensorial character: slabs, plates (deep beams and corbels
included), zones for which the assumption of plane deformations is not valid. For these
reasons, the present document concerns only monodimensional elements in the presence of
bending and normal forces.

Another important restriction concerns the case of dynamic and cyclic actions. Thus,
from now on, we shall always adopt the hypothesis of holonomy, which admits the
possibility of neglecting the influence of loading history, and we shall consider only the case
of a monotonic evolution of the intensity of the actions.

An important point to be taken into consideration is the choice of the material properties
assumed along the axis when performing the non linear analysis (geometrical stochastic
aspect). Eurocode 2 states that the deformations, and hence the distribution of internal forces
and moments, should be calculated on the basis of the mean values of the material properties.
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The design (ultimate) values shall, however, be assumed at the critical zones.

The main reasons which justify the above mentioned choice, in lieu of other possible
approaches, are the following:

+ Assuming the reduced ultimate design properties to coincide with the critical zones is
identical to the assumption adopted in the assessment of statically determinate structures.
Moreover, with this procedure, the final step of the non linear analysis is clearly
characterized by the attainment of the ultimate limit state at a critical zone.

+ The adoption of the mean properties along the axis of the structure is considered as the most
reliable image of physical reality.

+ The stochastic model described above fits well with the concept - suggested by the C.E.B.-
F.I.P. Model Code, that the statically indeterminate structures should be assessed “section
by section” (each overall analysis being performed to control one section assumed as
critical for a given loading arrangement).

As for the definition of the material properties to be assigned to the different parts of the
structure, it would have been possible to choose one of the following alternatives (which are
compared below to those proposed in Eurocode 2):

1) Adopting the mean properties throughout the structure. Under this assumption, in the
presence of the design value of the actions (yr Fg), the critical section can exceed its
ultimate design strength. Hence, the need to adopt a trial and error procedure in order to
optimize the dimensioning and to introduce adequate limitations when assessing a given
structure. The drawbacks of such method are:

a) normally, the redistribution of internal forces and moments would be very limited
(even more so than with the classical “linear with redistribution” method), owing to
the compensation between the effects of non linear deformations in zones subjected
to internal forces and moments of opposite signs;

b) the method implies that different properties be assigned to the critical section: mean
properties for a global analysis and ultimate design properties for local verifications.
It must be admitted that this procedure is rather artificial.

2) Assigning the design ultimate properties throughout the structure. This model is easy to
criticize from the probabilistic point of view, in that it would present an image of reality
whichis scarcely reliable and physically abnormal. Moreover, in this case too, redistribution
capacity would be rather limited, as in case 1) above, and the excessive deformability of
the structure could create anomalous situations. Another drawback of this hypothesis is
the impossibility to distinguish between the uncertainties of the response having a local
or a global character.

3) Adopting the “linearization procedure” which consists of performing anon linear analysis
until level vz Gk; Yr Qk (Yg <G, Yq < YQ) and then, for the local verification, increasing
linearly the effects of the actions by introducing a model uncertainty factor, ysg. As arule,
different material properties should be adopted for the two steps: a partial factor, Ym <Ym,
for non linear analysis; a full factor, ¥, for the local assessment. The linearization pro-
cedure was proposed when the problem of model uncertainty was considered for the first
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time. Its main advantage was to establish a distinction between the uncertainties related
to the overall or to the local response. Later on, it was abandoned for the problems of non
linear analysis without second order effects in that, stopping the non linear calculation at
an intermediate level, when the rigidity of the members is still effective, reduces
excessively the possibility of redistribution.

The foregoing objections have led to the adoption of the procedure described in Eurocode
2 (mean properties along the structure, ultimate design properties at the critical section). It
is however important to note that, while these hypotheses are on the safe side for the
resistance (they imply the coincidence of the lowest strengths with the critical section), they
may prove to be unsafe in relation to the global response, because they accentuate the
redistribution of the internal forces and moments from the critical section (where the
deformability is increased) to the remaining parts of the structure. To cover this aspect the
proposal was made to introduce a factor to reduce the bearing capacity. Successively, for the
sake of simplicity, it was deemed more advisable to limit the amount of the allowable
rotation capacity of the critical section. As a final remark on this subject, to answer possible
criticisms on the apparently artificial character of the choice of different material properties
along the axis of the structure, we should point out that, in reality, a similar approach is
equally adopted in “linear with redistribution™ and “plastic” procedures. Indeed, for both
methods, the first calculation is made by assigning uniform properties to the whole structure;
afterwards, the ultimate design properties are assumed in the critical regions to attain the
redistribution or the plastic rearrangement of the moments.



EXPERIMENTAL RESEARCH OF REINFORCED CONCRETE COLUMNS
BEHAVIOR UNDER THE LONG-TERM ECCENTRIC NORMAL FORCE

Assis. Professor Dr Dusan Najdanovic,
University of Belgrade

Professor Renaud Favre, EPFL, Lausanne

Professor Dr Zivota Perisic,
University of Belgrade

1. PURPOSE OF RESEARCH

The research described in this paper makes a part of a
voluminous research project the experimental part of which
has been carried out in the laboratories of the Swiss Federal
Institute of Technology (EPFL) in Lausanne, under the
direction of Professor Renaud Favre, the Director of the
Institute for Reinforced and Prestressed Concrete at EPFL. It
is primarily oriented towards time-dependent behavior of
reinforced concrete structures under the service loads. The
purpose of the investigation of the reinforced concrete
columns behavior under the long-term action of eccentric
compressive normal force was to experimentally establish the
moment-normal force-curvature relationship as well as to
follow the appearance and time-dependent development of
cracks.

2. DESCRIPTION OF THE EXPERIMENTS

The paper presents the most important column test results
obtained in the EPFL laboratories in the 1982-1985 period.
A total number of 18 columns have been tested, divided into
two experimental series ( A and B).

Long-term research was carried out in the air-conditioned
surroundings providing constant temperature of 20%1°C and
relative air humidity of 65%5%.

2.1. COLUMNS CHARACTERISTICS

Each of the two experimental series contained nine columns
of the same size, shown in Figure 1. The length of the
columns was 230 cm and the dimensions of the square cross
section were 30 x 30 cm. The dimensions of the columns were
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so selected as to avoid a significant influence of the normal
force on the deformation of the columns.
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Fig. 1 Test arrangement, measuring points and concrete
columns dimensions

2.1.1. Series A Columns

All the columns have been reinforced with longitudinal
reinforcement 8 2 12 mm which makes p = 1,0 %. The

concrete cover has been 2,4 cm.

Seven columns (Al to A7) have been loaded by a constant
normal force, ranging from 267 to 787 kN, with a uniaxial
eccentricity varying from 6,5 to 19,8 cm, Table 1. In order
to measure the creep and shrinkage of concrete in a real
scale, the column A8 has been loaded by axial normal force
N = 787 kN while the column AO has not been loaded.

The forces for columns Al to A7 have been selected as to
have the columns either in|state II, at the serviceability
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limit state (columns A2, A3, A5 and A6), or just on the limit
Table 1 Normal forces, eccentricities and stresses

calculated for the states I and II at the initial
moment of time to (n= 6,67) for the series A

columns
COLUMN
= AO Al A2 A3 A4 A5 Ab A7 A8
(8p12, Piot 1,0%) N
Normal force [kN] 0 267 | 267 267 515 515 515 787 787
Eccentricity {mm] 0 92 | 145 198 72 93 113 65 0
Moment M [khNm] 0 24,56)38,72 (52,87 (37,08 47,90 [58,20 |51,16 0
2 s ,10 | 8,00 | 2,15 | 4,35 | 6,45 | 2,10 /
Stresses Oct | tN/mm23 |/ 2,2%0) 5 e
STATE I Gél [N/mm21 | / -7,90{-10,80{-13,70{-13,10}-15,30|-17,45}-18,90 | /
tet ¢ | [N/mm2] | / 7,95 23,45| 38,95| 4,05| 15,90} 27,17| 0,13 | /
Stresses 0;2 [N/mm2] | / -8,70|-15,201-22,201-13,40{-17,00(-21,40(-18,95 | /
STATE 11
t-= t0 Y [N/mm21 | / 21,35(120,65265,0 9,00( 43,40 99,50 2,90 | /
Neutral axis x {mm] / 197,4[123,4 | 96,7 |245,4 1195,2 |159,0 |264,1

between states I and II ( columns Al and A4), Figure 2. The
curve showing the serviceability 1limit state has been
obtained by dividing the corresponding ultimate values M and

N by the global safety factor <y = 1,8. The values M and N

for the column A7 correspond to the point of intersection of
the serviceability limit state curve and the straight line
dividing the areas of state I and state II.

2.1.2. Series B Columns

The experimental series B also contained nine columns of
the same shape and dimensions as the series A but with

different percentage of reinforcement, ranging from p =0,5%

to p =4,72%.

The normal force N= 523 kN has been the same for all the
seven columns Bl to B7 with the eccentricities ranging from
10,0 cm to 22,1 cm, Table 2. Two columns, B8 and B0 were not
reinforced. The B8 column has been subjected to the axial
force N=1134 kN and BO has not been loaded, to allow for the
creep evaluation and the determination of concrete shrinkage.
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COLUMN BO | BL | B | B3 |B4 |B5 | B6 |B7 | BB
Percentage of (%] 0 4012 mm 89 18 mm 8 f 26 mm 0 0
reinforcement  "tot 0,5 % 2,26 % 4,72 %

Normal force [kN] 0 523 | 523 523 523 523 523 523 1134
Eccentricitie e C[mm] 0 109 | 123 129 156 161 221 100 J
Moment M [kNm] 0 57,0 (64,33 |67,47 |81,59 (84,20 |L15,58 [57,3 0

2 _

Stresses Ocp | EN/mm23 |/ 6,35 7,90 | 7,45 | 9,8 | 9,10 14,30 |-5,8 /
STATE I Okl [N/mm2]1 | / |-17,65[-19,20(-18,05]-20,70|-18,80| -24,40{-17,4 |-12,6
t=t, ogp | IN/mm23 | / | 26,40]34,65 |31,05 [44,90 |37,80 | 63,90 | / /
Stresses ocp | tN/m21 |/ |-22,10|-26,25|-21,15|-25,75|-20,90| -28,00|-23,2 | /

STATE 11

t = to 9¢p | IN/mm21 | / [106,85|175,50(93,80 {155,70(91,65 [ 171,10] / /
Neutral axis {mm] / |156,6 [134,9 [160,3 |140,2 |158,6 | 137,3 [149,9 /
Table 2 Normal force, eccentricities and stresses

calculated for states I and II at the initial

moment of time to

columns

(n=6,67)

for the series B

Fig. 2 The interaction M-N diagram for columns Al to A8
with normal forces and their eccentricities
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2.2. TEST ARRANGEMENT

The testing equipment partly shown in Figure 1, consisted of
massive metal stand for 8 columns in vertical position. Steel
plates 50 cm thick on the top and bottom of the columns and
four "Dywidag" prestressing steel ties make a closed system
in which the load was applied by hydraulic jacks to the
columns over linear rotating bearings. The maintenance of
constant forces during the whole time of the experiment was
provided by the system of nitrogen accumulators. The process
of the force application itself has been carried out
gradually and evenly by an electric pump in the course of 5
minutes at the age of concrete elements of 28 days.

2.3. MEASUREMENTS

The measurements have been done immediately after the
required force has been reached and then after 15 minutes, 1
hour, 3,5 and 12 hours, after 1 day, 3, 7 and 15 days and
then once a month. During the very process of the load
application the strains have been constantly measured by 4
fixed inductive deformeters with the base length of 40 cm, in
the middle part of each column height, two on both the
compressed and the tensioned columns sides, Figure 1. That
has enabled drawing of a complete diagram force-mean
curvature during the loading.

Further measuring of strains on the compressed and the
tensioned sides of the columns, as well as at the level of
the tensioned and compressed reinforcement, has been carried
out following the same time schedule. The strains were
measured with movable inductive deformeters ( the length of
the base 100 mm) in the middle part of 90 cm of the columns
length, on 80 measuring points (72 bases in total), shown in
Figure 1. Theoretical preciseness of such measuring is 10~
for the strains and 10 mm for the width of cracks found
between the two measuring points. Deflections have been
measured in three sections during the whole testing using
mechanical deflectometers placed on an independent invar
structure.

Evaluation of the crack widths has been carried out by
measuring the length changes between the two measuring points
(the distance between them being 10 cm) which included the
observed crack. The average crack width has been calculated
on the basis of all visible cracks that have appeared on the
tensioned area _of the column.



158
2.4. MATERIAL CHARACTERISTICS
2.4.1. Concrete

The columns concrete has been the grade BH 300 (according to
SIA 162) made with four aggregate fractions with the grain
size ranging up to 30 mm, with 300 kg of CPN cement, the
water-cement ratio being 0,5. The columns have been
concreted in horizontal position with the compressed side
upwards. Mechanical and rheological characteristics of
concrete, determined according to SIA 162, had the following
values:

Compressive strength measured on 15/30 cm cylinders at the
age of concrete 28 days, was 38,9 MPa for the series A
columns, namely 38,1 MPa for the columns of the series B.

Bending tensile strength (modulus of rupture), established on
prisms 12 x 12 x 36 cm, was 6,5 MPa for both of the series.

Modulus of deformation measured on prisms has been 34,9 MPa
(series A) and 33,7 MPa (series B). Measured on cylinders it
was 31,3 MPa (series A), namely 30,2 MPa (series B).

Creep and shrinkage of concrete measured on prisms, on the
columns A0 and A8 and on the B nonreinforced columns are
presented in Tables 3 and 4. The effect of reinforcement on
creep and shrinkage in the columns A0 and A8 have been
deducted by comparative calculation.

Table 3 Characteristics of creep and shrinkage - series A

Experimental serie A
Prisms 120 x 120 x 360 mm Columns A0 and A8

tA?et Shrinkage Creep (gq = 374 - 1076) Shrinkage Creep (gy = 374-1076)

0 |ecg (10767 Jep+e (10767 | ¢ = ep/ey || ecg[1078T |ep + e g[10701 |6 =gy /€,
1 day 14 108 0,39 0 92 0,38
3 days 27 143 0,48 8 100 0,39
7 days 46 199 0,64 13 134 0,50
14 days 83 262 0,75 20 157 0,57
21 days 101 309 0,87 31 184 0,64
28 days 113 340 0,95 38 208 0,71
3 months 209 520 1,30 78 301 0,93
6 months 264 623 1,50 115 376 1,09
1 year 321 743 1,76 184 471 1,20
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Table 4 Characteristics of creep and shrinkage-series B

Experimental serie B

Prisms 120 x 120 x 360 mm Columns BQOand B8 (ptot =0 %)
Age Shrinkage | Creep (gq = 374-10-6) Shrinkage | Creep (eq = 374-106)
bty e [1076] [y ¥ecgl106T | 6 = ep/eg | ecsl10767 [ep + ecg[10761 |4 = of/e,
1 day 9 207 0,53 6 132 0,34
3 days 10 270 0,70 19 158 0,37
7 days 12 341 0,88 40 202 0,43
14 days 13 419 1,09 45 250 0,55
21 days 32 480 1,20 52 299 0,66
28 days 60 521 1,23 60 350 0,78
3 months | 141 778 1,70 111 508 1,06
6 months | 171 902 1,9 156 671 1,38
1 year 211 1014 2,15 179 760 1,55

2.4.2. Reinforcement

The longitudinal reinforcement samples type IIIb TOR 50 have
been tested and the following results have been obtained:

- Modulus of elasticity (mean value of six specimens) is
209.800 MPa,

- Yield strength f, = 575 MPa, tensile strength is
f,. = 680 Mpa.

3. MAIN RESULTS OF THE EXPERIMENTS

During the testing of both series of columns about 20.000
measures have been registered which have been subsequently
elaborated and analyzed using a computer. Only some of the
most interesting results will be presented here.

3.1. STRAINS
a. Reinforcement

Time-dependent development of mean tensioned reinforcement,

strains ( €, ), shows a constant increase in the columns A3

and A6, Figure 3. After one year period, the strains have
become 1,5 times larger than the initial values in the column
Al, and 1,8 times larger in the column A6. After a slow rise
during the first month, the strains practically do not
increase in.,the columns'A2 and A5. In columns in which the
bending moment is closejto the cracking moment (Al and A7)
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after a slow strains increase during the first weeks upon the
application of load, the mean strains have even a decreasing
tendency.
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Fig. 3 Time-dependent mean strains in the tensioned
reinforcement (series A columns)

Regarding the columns of the series B, largest time-dependent
mean strain increase has been found in the column B7, the
total mean strains being 1,7 times larger than the initial
strains, while the increase of strains in other columns has
been relatively low due to high percentage of reinforcement,
Figure 4.

Contrary to the time development of mean strains in the
tensioned reinforcement, it was observed that mean strains in

the level of compressed reinforcement ( €y, ) in all columns

significantly increase compared to their initial values. The
greatest increase of mean strains has been registered in the
columns Al, A4 and A7, which have the lowest eccentricity of
the normal force, Figure 5. The maximum has been reached in
the column Al where, after one year, the mean strain increase
is 3,2 times the initial value. In the series B columns,
which have been reinforced with a higher percentage of
reinforcement then the series A columns, the increase of the
initial, strains after one,year is about 2,0.
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Fig. 4 Time-dependent mean strains in the tensioned
reinforcement (series B columns)

It is important to note that the stresses corresponding to
compressed reinforcement maximum strains in all the columns
of the series B, as well as in the columns A6 and A7 of the
series A, exceed 300 MPa, Figures 5 and 6. Although in some
of the columns subjected to the service load even the elastic
limit of steel has been even exceeded, no damage on the
compressed area of concrete has been noticed. The largest
strain in the compressed reinforcement after one vyear,

€s.max = -3,3 %o, have been observed in the column B2. In the

columns of the series A, the highest maximum strain in the
level of the compressed reinforcement is in the column A6 and

it amounts to &y g = -1.81%, Fiqure 5.

b. Concrete

Initial mean strains of concrete, measured on the compressed
sides of the columns ( €., ), significantly increase with

time. Among the columns of the series A, the highest increase
of mean strain after one year has been registered in the
column Al, in which the mean strain is 3,2 times higher
compared with the initial strain, Figure 7. The increase is
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2,3 in the column A3 which has the greatest eccentricity of
the normal force. The highest mean compression strain in
concrete, reached after one year, is found in the column A6

and it amounts to € = -1.87 %o .
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Fig. 7 Time-dependent mean compression strains in concrete
(series A columns)

In the series B columns, where there is a low percentage of
reinforcement ( columns Bl and B2), the mean compression
strains increase is 2,4, namely 2,3, while in other columns
it is about 2,0. The highest values of the mean strain after
one year have been observed in the column B2, amounting to
-3,5 % while in the columns Bl, B4 and B6 the values of
-2,0 % have been exceeded.

3.2. MEAN CURVATURE

The mean curvature of the column ( 1/r,) is calculated from
mean strains measured on the compressed face of column and
mean strains in the level of the tensioned reinforcement, in
the middle part of the columns, at the length of 90 cm. It
can be noticed that time-dependent curvature increase is
faster for columns with a lower normal force eccentricity.
Soyppthenmeanycurvaturemofmthe column A7 after one year is
about 2,5 times higher compared to the initial one while the
mean curvature  of the column A3, which has the highest
normal force eccentricity, is by 1,9 times higher, Figure 8.
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Fig. 8 Measured time dependent values of the mean
curvature (series A columns)

The mean curvature increase in the columns loaded with the
same normal force is more expressive in the columns in which
the bending moment is near the cracking moment, as in columns
Al and A7. The same phenomenon has been registered with the
series B columns. In pairs of the series B columns which
had the same reinforcement (B1/B2, B3/B4 and B5/B6), Fiqure
9, the slower increase of the mean column curvature has been
also observed with the higher normal force eccentricity.

The percentage of the reinforcement also significantly
influences the increase of curvature. So, the curvature of
the Bl column increases more rapidly (about 2,15 times the
initial) compared to the column B5 which has been reinforced
with a higher percent age of reinforcement and in which this
increase is about 1,5, Figure 9.

3.3. DEFLECTIONS

The column deflections developed with time in the same manner
as the mean curvatures. Of the series A, the column A3 had
the largest deflection of 6,2 mm after one year while the
largest deflection of 11,7 mm in the series B is registered
for the column B2.
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3.4. CRACKS

a. Distance between cracks

After the application of load, first cracks have been marked
on all the columns as well as those which later appeared with
time. Examples of stabilized crack patterns after one year
are shown in Figqgure 10. It can be generally concluded that
the cracks distance found immediately or in the first weeks
upon the load application does not essentially change in the
later period and that it practically remains constant with
time.

On the basis of strains measured on the tensioned face of
columns, it can be stated that first cracks appear when the
strain of about 0,1%. is reached. Although the crack patterns
are relatively irreqular, it is evident that the position of
the first cracks mainly correspond to the position of
stirrups in the columns, resulting in the average distance
between cracks of about 20 cm as in this case it was the
distance between the stirrups. However, in the columns which
were loaded with bending moments much above the cracking
moment) 'therinter=cracks'frequently appear. In such a way in
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Fig. 10 Crack patterns in the columns Al and A2, one
year after the application of load

columns A2 and A5 the average distance between cracks of 12
cm, namely of 16 cm, has been measured while in the columns
A3 and A6 the distance is only 11 cm. The smallest distance
between cracks, of only 6 cm, has been measured in the column
A6.

In the pairs of series B columns with the same reinforcement,
the distance between cracks is larger in the columns with
lower normal force eccentricity. For example, in the columns
B3 and B4 the average distance between cracks is 19 cm,
namely 17 cm, while the distances of 18 cm, namely of 14 cm,
have been measured in the columns B5 and B6. In the columns
with a lower percentage of reinforcement, as are the columns
Bl and B2, the average distance between cracks is 19 cm.

b. Crack widths

On the basis of the analyzed measurements, a general
statementycanvbesmadesthatvunder the influence of constant
loading, the crack widths has in some cases the tendency to
significantly increase with time. Observing all the columns,
from both of the series, the average crack width (w,) has the
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maximum increase in the column A6, reaching 100 % after one
year. In the columns loaded by the bending moment close to
the cracking moment it has been found that the average crack
widths slowly increase during the first three months,
remaining almost constant after that time or even gradually
decreasing. This happens mainly due to the gradual closing of
some number of cracks the width of which at the initial
moment was below 0,02 mm. The survey of the ratios between
the average crack widths after one year (w,) and the initial
average crack widths (w,) is presented in Table 5.

The ratio between the largest and the average crack widths
in columns changes with time and it is reqularly higher
after one year for the series A columns which is not always
the case with the series B columns. This ratio increases with
the decrease of normal load eccentricity and when bending
moment is closer to the cracking moment. For such columns in
the series A, after one year the ratios

Table 5 The ratios between the average crack widths after
one year (w,) and the initial average crack widths

(W)
Series A
Columns Al A2 A3 A4 A5 A6 A7
W /w, 1.25 1.88 |11.61|1.30| 1.88} 2.02 | 1.90
Series B
Columns Bl B2 B3 B4 BS B6
W, /w, 1.91 1.77 | 135 1.39 |1 1.33 1.64

range between 1,70 and 1,95. The ratio between the largest
and the average crack widths is the smallest in the column
with the highest normal load eccentricity, the column A3,
and amounts 1,17. Those ratios are lower in the series B
columns as the bending moments are significantly higher
then the cracking moment. They range between 1,12 for the
column B3 and 1,31 for the _column B5.

With regard to the average crack width after one year, it
is the largest in the.column A3, reaching 0,24 mm and in the
series B columns it is the largest in the column B2,
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Fig. 11 Time-dependent development of the average crack
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reaching 0,63 mm. Time-dependent development of cracks
expressed through the average crack widths in all the series
A and B columns is shown in Figures 11 and 12.

4. COMMENTS

On the basis of those extensive experimental results it can
be stated that the creep and shrinkage of concrete have a
great influence on the changes of reinforced concrete members
stresses, strains and deformations under the long-term
sustained loading. Regardless of the fact that the tested
columns were loaded by relatively high compressive forces,
time-dependent development of cracks point to the fact that
even in such cases the serviceability limit states may be
affected by the time-dependent behavior of concrete. In spite
of a relatively small number of tested columns, the influence
of different percentage of reinforcement as well as the
influence of the magnitude and eccentricity of the normal
load on the size and development of deformations and cracks,
both in the initial period and during the whole subsequent
course of testing is evident.

Although the obtained results offer very large possibilities
for comparative analyses and conclusions in the field of
time-dependent behavior of the reinforced concrete elements
subjected to the complex bending, this paper is primarily
conceived as a general report and a review of the main
results of this experimental research project.
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MODELLING IMPACT LOADING OF REINFORCED CONCRETE STRUCTURES

Andrew Scanlon
Professor of Civil Engineering
The Pennsylvania State University

INTRODUCTION

Impact loading involving collision between an external body and a concrete structure
is an extreme loading condition that has to be considered in some situations. Typical
cases include vehicle impact against bridge and other structures, iceberg impact against
offshore structures, and impact of projectiles as a result of explosions or falling
objects, to name a few. Analytical modelling of impact phenomena presents a
significant challenge. In addition to treating the contact conditions between two
impacting objects it is necessary to include highly nonlinear material modelling
because of the severity of the loading that often occurs. Because of the short duration
of the load, strain rate dependence of the response should also be considered.

This paper presents a brief review of two research projects recently conducted at Penn
State University to investigate the capabilities of finite element modelling to handle
impact loading. The first project deals with the general case of impact between an
external body and a concrete structure. Both are treated as two-dimensional systems
represented by plane stress finite elements. This work was motivated by an
experimental program to assess the performance of bridge barriers under impact loads
similar to vehicle impact (Scanlon et al. 1989). The second project involves the
modelling of reinforcing bars embedded in concrete to investigate the effects of high-
rate impact loading on bond between concrete and reinforcement.

MODELLING IMPACT BETWEEN EXTERNAL MASS AND CONCRETE
STRUCTURE

In this project, Riad (1991) implemented the general approach to modelling of impact
and release conditions proposed by Hughes et al. (1976). Considering the simple
example shown in Figure 1 involving a mass striking a vertical cantilever, the element
nodes are divided into contact and no-contact nodes. The impact velocity of the
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striking mass is prescribed and a time-stepping procedure is used to monitor the
contact conditions at the potential contact nodes during and after initial impact.
Multiple impacts are possible. Neglecting damping, the equations of motion for the
impacting mass and structure can be written as,

M, 0@, |K, K,l||u, 0 0 M
L+ + =
0 M, li,| |K,, K,llu, T, |0

ch ch
K, Ky |4,

u
+ c

e e

The forces t, and t, represent equal and opposite forces at the contact nodes. When

there is no contact these forces are zero. During contact the forces are equal and
opposite and the combined equations of motion can be written as,

M, 0 0] la,] [K, K, 0] ro
0 M, +M) 0| i |+|Ky &y +K) Kyl=|0|®
0 0 M| la,| |o K, K, |0

The relative positions of potential contact nodes are monitored and when contact is
detected displacements u, are set equal to u, and the form given by Eq. 3 is used to

analyze the combined system. When release conditions are detected by the presence
of tensile contact forces the contact nodes are released.

The equations of motion are solved at each time step using the explicit central
difference scheme. The impact formulation was implemented in the computer program
DYNPAK developed by Owen and Hinton (1980). The program contains options for
several material models including elastic and elasto-viscoplastic models both of which
were used in the present study. Two examples are presented to illustrate the
application of the procedure

Example 1. Impact Between Two Elastic Rods
Figure 2 shows the two rods, one at rest and the other approaching at a velocity of 0.1

in/sec. Results in the form of contact force and displacement histories are presented
for two time increments.



173

The first case shown in Figure 3 is based on o¢ = 0.005 sec which is exactly the time
taken for the stress wave to traverse one element. This case produces a crisp contact
force history matching the theoretical result based on wave theory. The corresponding
nodal displacements are also shown. Some noise appears to develop in the
displacement at node 43 after release when theoretically the displacement should
remain constant.

Figure 4 shows the results when the time increment is reduced to 5¢ = 0.0008 sec.
After some initial fluctuation about the correct solution the computed impact force
converges to the correct value and the impact duration is correct. The displacement
history does not indicate the noise that was present in the previous example after
release.

These results suggest that for one dimensional problems the optimum time increment
to simulate impact forces is that corresponding to the time taken for the wave to cross
the element. However, smaller time increments produce satisfactory results and
actually improve the calculation of displacement. For more complicated problems,
particularly two dimensional problems and non-linear materials, it will not always be
possible to match element size and wave speed.

Example 2. Impact Between Two-Dimensional Mass and Cantilever

A series of analyses was performed on the structure shown in Figure 1. Presented
here are some of the results for a reinforced concrete model as shown in Figure 5.
The bar is represented by discrete elements and precracked elements at the base
account for low tensile strength across a construction joint. Elasto-viscoplastic
material modelling is assumed. The mass consists of a combination of steel and
plywood material properties.

The discontinuous nature of the contact is illustrated in the displacement history at
adjacent nodes 6 and 32 as shown in Figure 6. Shown in Figure 7 are contact forces
at nodes 1 and 6. Again, it can be seen that the computed force is not continuous but
consists of a series of contact and release events at the lower node. At the upper
node, because of the deflected shape of the cantilever, there is a single short duration
contact.

MODELLING REINFORCING BAR EMBEDDED IN CONCRETE
An alternative approach to modelling impact is to use a contact element at the interface

between potential contact nodes. This approach was used by Maksoud (1991) in his
work dealing with uniaxial impact modelling. The contact element consists of a stiff
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spring and a gap in series. The displacements at each end of the contact element (i.e.
the adjacent nodal displacements) are monitored to determine when contact and release
occur. When contact takes place a force is developed in the contact element. This
approach was used to analyze a test specimen from an experimental investigation
conducted by Vos and Reinhardt (1981) to investigate effects of impact loading on
bond. The test set-up consisted of a Split Hopkinson Bar arrangement. Details of the
specimen are shown in Figure 8. The specimen is sandwiched between two aluminum
bars. A falling mass strikes an anvil at the bottom of the lower bar causing a tensile
pulse to travel up the bar and through the specimen. The finite element model
consisting of axisymmetric elements is shown in Figure 9.

Response parameters considered in the study were the shear stress in the concrete
adjacent to the bar identified as Locl in Figure 9, the stress in the steel bar at Loc2,
and the displacement at the top end of the reinforcing bar. A major parameter in the
specification of the visco-elastic material characteristics is the fluidity parameter (a
measure of the inverse of viscosity). Since this parameter does not appear to be well
defined for concrete, analyses were conducted for a series of values to determine the
sensitivity of the solution to assumed values. Figure 10 shows a plot of computed bar
displacements for several values of y, the fluidity parameter. A good match between
computed and reported measured displacements is evident for y = 10. In Figure 11,
shear stresses computed at Locl are compared with measured average bond stress
based on bar force divided by bond area. Although the trends are similar, there is a
significant discrepancy between the magnitudes of measured and computed stresses.
This may be partly due to the fact that local peak stresses are likely to be significantly
larger than average vales along the length of the bar. Shown in Figure 12 are
computed bar stresses for two values of y. Again the solution is seen to be quite
sensitive to this parameter.

CONCLUDING REMARKS

The two studies summarized briefly in this paper indicate that the proposed modelling
procedures for impact loading have potential for providing useful results. Additional
work is needed to refine the material modelling used to incorporate more realistic
constitutive laws for concrete including strain rate dependency and fracture. In
addition the modelling of contact needs to be generalized to permit "sliding” of
adjacent nodal points rather than assuming they are glued together during the contact
duration.
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TENDON STRESS IN UNBONDED PARTIALLY PRESTRESSED CONCRETE BEAMS

T.I. Campbell
Department of Civil Engineering
Queen’s University, Kingston, Ontario, Canada

INTRODUCTION

A post-tensioned prestressed concrete member may be classified as
either bonded or unbonded. In a bonded member cement or epoxy grout is
injected into the ducts containing the prestressing tendons, after the
desired prestressing force has been applied, to establish bond between
the tendons and the ducts. Alternatively, the ducts may be left empty,
or filled with grease, in which case no bond exists between the tendons
and the ducts, resulting in an unbonded member. Prestressed members may
also be classified as either fully or partially prestressed. Fully
prestressed members contain only prestressed reinforcement, whereas
partially prestressed members contain bonded nonprestressed
reinforcement in addition to prestressed reinforcement in the tension
zone.

Unbonded tendons provide an economical form of reinforcement for
structures requiring a large number of relatively small tendons
distributed throughout the structure, such as in flat plate floor
construction. Another common use of unbonded tendons is to tie together
the segments during construction of a segmental concrete bridge.
However, a segmental bridge is an unbonded structure only during the
construction stage, since the ducts are usually filled with cement grout
after completion of construction of the entire bridge in order to
protect the tendons against corrosion. A recent trend in bridge
construction is the use of external prestressing where the tendons are
located within the internal voids of a box girder and deviator blocks
are used to deflect the profile of the tendons. Although the tendons
are usually protected by cement grout, since they are not contained
within the concrete they behave primarily as unbonded tendons®.

Determination of the moment resistance of a reinforced concrete
section requires a knowledge of the force in the tensile reinforcement
at the section. In an unbonded prestressed beam the increase in the
stress in the prestressed reinforcement during loading to failure is not
easy to predict. This is a consequence of the change in strain in the
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prestressed reinforcement, and hence the stress, at any section not
being related directly to the change in strain in the surrounding
concrete at that section as in a bonded beamn.

Under load a fully prestressed unbonded flexural member behaves
primarily as a tied arch, with the unbonded prestressed reinforcement
acting as the tension tie and the concrete as the compressive chord of
the arch. When the member is loaded to failure, a plastic hinge forms
at a section in the maximum moment region where cracking is concentrated
and all rotation is confined primarily to the location of this hinge
(Fig. 1(a)). However, when nonprestressed bonded reinforcement is added
to the unbonded prestressed reinforcement, the member may behave more
like a beam than a tied-arch. 1In this case the stress in the bonded
reinforcement varies over the length of the member, and consequently
cracking and rotation are not confined to a plastic hinge region but are
distributed along the
span (Fig. 1(b)). Thus
dle)terminition of the CRUSI‘;HNG
tendon stress at
failure of an unbonded CONGRETE
member is complicated
by the fact that such a
member may behave as an
arch or a beam.

REINFORCEMENT A CRACK
(a) Arch behaviour

This paper traces
the development of
approaches which have

been used in CRUSHING
determination of the OF
stress, fps , 1in the CONCRETE
prestressed

reinforcement at

failure of an unbonded
prestressed beam. The
shortcomings of some
present-day North

American design codes REINFORCEMENT CRACKS
with regard to the (b) Beam behaviour
prediction of f . in a

partially prestressed Fig. 1. Arch and Beam Behaviour
unbonded beam are

outlined. Finally,

some mathematical models for simulation of a unbonded prestressed
concrete beam are described, and the influences of various parameters
on fps’ as predicted by these models, are outlined.

EMPIRICAL EQUATIONS

Early researchon'unbonded’ fully prestressed concrete beams
focused on the implementation of a strain compatibility factor by means
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of which the tendon stress at failure of the beam could be computed in
a manner similar to the strain compatibility approach? used for bonded
beams. The strain compatibility factor (F) was defined as the ratio of
the change in strain in the prestressed reinforcement divided by the
change in concrete strain adjacent to the reinforcement at the failure
section. Various expressions 3:4:5:6.7 relating F to various parameters
of a beam have been suggested. However, it is difficult to estimate F
accurately and generally simplified expressions based on test data have
been adopted to give the tendon stress at failure (£,,) directly.

Using as a basis a lower bound to the limited test data available
in 1963, ACI 318-63% gave the following equation (in psi units):

foo = £, + 15000 1)

where f,, is the effective stress in the prestressed reinforcement after
losses. Subsequent test data 9 0. 1! indicated some limitations of Eqn.
(1) and as a result ACI 318-71'2 and ACI 318-77'% contained the following
equation:

f = £, + 10000 + £, [ 100p, @)

with the limitations f,; < f,, or f, < f,, + 60000, where f', is the
compressive strength of concrete, p, is the prestressing steel ratio and
foy 1s the yield stress of the prestressing steel. Equation (2) was
also adopted by A23,3-1973'% and CAN3-A23.3-M77%5,

Subsequent research © 18 17 indicated that f,, was dependent on the
span to depth ratio of the member. Consequently ACI 318-831% restricted
the use of Eqn. (2) to beams with a span to depth ratio less than or
equal to 35 and introduced the following equation when the span to depth
ratio exceeded 35:

fos = foe + 10000 + £ [ 300p, ®)

with the limitations f,, < f,, or f,, < f,. + 30000. Equations (2) and
(3) have been retained in ACI 318-8919,

In order to overcome the undesirable discontinuity introduced at
a span to depth ratio of 35 in the above approach, Harajli?® has
suggested use of the following equation:

foo = £, + (10000 + £, [ 100p ) (0.4 + 8/t/d)

with the limitations f,, < fj; or £, < f,, + 60000, where £ is the span
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length and is the distance from the extreme compression fibre to the
centroid of the prestressed reinforcement.

It should be noted that none of the above equations account for
the influence of any bonded nonprestressed reinforcement in a beam
although the relevant codes require a minimum amount of such
reinforcement in an unbonded beam. The presence of bonded
nonprestressed reinforcement enables an unbonded prestressed beam to act
as a flexural member after cracking rather than as a shallow tied arch,
which exemplifies the behaviour exhibited by an unbonded fully
prestressed beam. Consequently, a number of researchers 16,21, 22 pave
suggested that the influence of bonded nonprestressed reinforcement
should be accounted for in any equation for qx.

CAN3-A23.3-M8423 gives the equation (in MPa units):

5000
¢

e

fo-fo+ 2@ - )

with the limitation f, < f, where c, is the depth from the extreme
compression fiber to éﬁe neutral axis’ calculated assuming a stress of
f, in the tendons, and £, is the length of the prestressing tendon
between anchors divided by the number of plastic hinges required to
develop a failure mechanism in the span under consideration. In Eqn.
(4), the value of ¢, is influenced by the amount of bonded
nonprestressed reinforcement and therefore its effect is taken into
consideration in the calculation of f,,. In developing Eqn. (4) Loov?
assumed that all deformation in a beam was confined within a length
proportional to the neutral axis depth and established the 5000 term by
a lower bound fit to existing test data.

Table 1. Comparison of observed and predicted values of Afps

P obseRiea | e Pl Af,, observed £an. Pi2) Af,, observed
(MPa) (MPa) m (MPa) m
1 396 216 1.83 148 2.68
2 402 183 2.20 147 2.73
3 332 148 2.24 145 2.29
4 252 135 1.87 158 1.59
5 193 106 1.82 159 1.21
6 183 77 238 159 1.15
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Table 1 shows a comparison of the increase in tendon stress (Af)
as predicted by Eqns. (2) and (4), and as measured by Chouinard?® in
tests on six simply-supported unbonded beams. These beams were
subjected to third-point loading, had a span to depth ratio of 15 and
the amount of nonprestressed reinforcement increased from zero in Beam
1 to a maximum of 2.8 percent in Beam 6. All six beams had a
prestressed reinforcement ratio (p;) of 4.22 x 1073, It can be seen
that, while Eqn. (4) underestimated Afps by a factor of about 2, it did
predict the proper trend in that Af,, decreased with increasing amount
of nonprestressed reinforcement. Equation (2) on the other hand
predicted similar values of Af,; for all the six beams, the variation
being due entirely to the difference in the strength of the concrete in
the beams. As a result, Eqn. (2) gave an underestimate of 2.73 times
for Beam 2 but only 1.15 for Beam 6. Loov?* has suggested that the
factor 5000 in Eqn. (4) could probably be increased to 8000 in which
case the underestimation of the observed Af,, values in Table 1 would be
reduced to about 1.3.

Based on a number of tests conducted on simply supported unbonded
partially prestressed beams, Du and Tao?! proposed the following
equation (in MPa units):

f, = f, + 786 - 1920q,

with the limitation f,, < f; and q, < 0.3 where q,, which is the
combined reinforcement index, is a measure of the total amount of
reinforcement in the beam.

Harajli and Hijazi?? have developed the following lower bound
equation from a comprehensive analytical study of unbonded members:

fmfu* ¥ f (@ = B )

P

where v is a parameter which is a function of span to depth ratio and
type of loading, and a and B are parameters whose magnitude depends on
the spread of plasticity in the member and are related to geometry of
applied loads.

ANALYTICAL INVESTIGATIONS

Most of the past research on unbonded partially prestressed
concrete members has been based on laboratory tests in which it is
possible only to investigate the effects of a limited number of
parameters on the value of f,. More recently, however, suitable
mathematicalwmodels??26mhavemaden it possible to conduct extensive
analytical investigations of unbonded partially prestressed concrete
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Kibbee?® used four models to carry out an extensive parametric
evaluation of the effects of a number of variables on the stress in the
prestressed reinforcement at failure of an unbonded beam. These models
were PCFRAME, NOBOND, ARCH and TRUSS. The PCFRAME model, which is a
finite element program for the analysis of planar reinforced and
prestressed concrete frames, was developed at the University of
California at Berkeley by Kang The program is capable of predicting
the response of an unbonded prestressed concrete beam throughout the
elastic, inelastic and ultimate load ranges. NOBOND makes use of
compatibility of deformation between the concrete and the prestressing
steel over the length of the prestressing tendon by assuming that the
deformation in the concrete can be determined from the curvature
distribution along the length of the beam. This appx‘oach21'28 is valid
since the presence of a small amount of nonprestressed bonded
reinforcement results in a uniform crack distribution in an unbonded
prestressed member with the result that is behaves as a flexural member
rather than a tied arch. On the other hand, ARCH models a beam as a
tied arch using the approach suggested by Pannell??, where it is assumed
that all deformation is concentrated in a zone of plasticity located in
the maximum moment region and having a length related to the depth of
the neutral axis at the failure section. The TRUSS model employed the
ANSYS30 general purpose program to analyse a truss which was used to
simulate an unbonded beam.

Figures 2 and 3 show some results obtained by Kibbee2 from the
above four models. Figure 2 compares results from NOBOND and PCFRAME
with values given by ACI 318-89 (Eqns (2) and (3)) and by a modified CSA
M-84 (Eqn. (4) with parameter 5000 value changed to 8000). Predictions
from ARCH, NOBOND and the modified CSA M-84 equation are shown in Fig.
3. It can be seen from Fig. 2 that, while the increase in tendon
stress, Afps, as predicted by NOBOND and PCFRAME is largely independent
of span to depth ratio, it decreases with increasing span to depth ratio
according to the modified CSA M-84 equation. Figure 3 shows that this
equation is in close agreement with the predictions from the ARCH model.
Kibbee?® attributed the difference between the NOBOND and PCFRAME
results in Fig. 2 to the fact that PCFRAME accounts for geometric
nonlinearity whereas NOBOND does not. It can be seen from Fig. 2 that
span to depth ratio appears to have little effect on Af, for members
that fail as beams. However, as the span to depth ratio increases, for
members that fail as tied arches, decreases, with the decrease
being most pronounced for beams w1ijf span to depth ratio in the
neighbourhood of 10 to 20. Kibbee also concluded that Af increases
with the extreme fiber concrete strain at failure, decreases as the
combined amount of bonded and unbonded reinforcement is increased, and
is affected by the loading pattern. For point loads, symmetrically
placed about the midspan of a simply supported beam, Af . increases as
the loads are moved towards the supports. In a beam subjected to a
uniformly distributed load Af . is lower than in an equivalent beam
under third point loading. %%e TRUSS model used by Kibbee indicated
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that the addition of a relatively small amount of bonded nonprestressed
reinforcement results in a change from arch behaviour to beam behaviour

in beams with unbonded tendons.

BEAM 1

BEAM 2

BEAM 3

BEAM 4

BEAM 5

BEAM 6

} DENOTES LOAD POSITION

Fig. 4. Crack Patterns at Failure

Figure 4 shows the crack patterns in the six beams tested
Chouinard®. The reduction in crack spacing and the extension
cracking into the shear span of an unbonded beam as the amount
nonprestressed reinforcement is increased (Beam 1 to Beam 6) can
seen. Chouinard concluded that the extent of the plastic zone

by
of
of
be
at

failure in an unbonded beam is related to the level of the shear force
in the beam and that the shear effect should be accounted for in an
analysis. Harajli and Hija2122 have suggested that, at failure, the
increase in the length of the plastic zone beyond the maximum moment
region be accounted for in a compatibility analysis similar to that

employed in NOBOND by adjusting the load configuration as indicated in

tual spacing (L,) of the loads

ol L) fyl_llsl

be

effective depth of the prestressed
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reinforcement, , to give an apparent spacing of L,. This results in
an 'apparent’ distribution of curvature at failure given by the solid
line in Fig. 5 (b), as opposed to the 'actual’ distribution indicated
by the broken line. Chouinard® has shown that such an increase, which
is independent of the level of shear, may not be sufficient to account
for the influence of the spread of plasticity in a beam.

Hadj Taieb3! has developed a model, designated as NBTRUSS, to
simulate an unbonded beam by modifying NOBOND using the diagonal
compression field theory to incorporate shear effects. A comparison
of results from NBTRUSS, NOBOND and ARCH for a partially prestressed
unbonded beam with different span to depth ratios and subjected to
third-point loading is shown in Fig. 6. It can be seen that a distinct
change in behaviour, as predicted by NBTRUSS, occurs at a span to depth
ratio of approximately 10. For span to depth ratios less than 10, the
values of Af,  from NBTRUSS are in agreement with those from ARCH. This
is a consequence of NBTRUSS detecting that the beam exhibits flexural
1nstab111ty due to yielding of the nonprestressed bonded reinforcement
at cracking in the shear span and, as a result, utilizing the ARCH
approach incorporated in NBTRUSS to accommodate the analysis of this
case. For higher span to depth ratios the values of Af,. from NBTRUSS
approach those from NOBOND from above with the difference becoming
negligible at higher span to depth ratios. The reducing influence of
shear with increasing span to depth ratio results from the predominance
of flexural over shear effects in beams with higher span to depth
ratios. Hadj Taieb also showed that the effect of span to depth ratio
is influenced by the loading condition and is most pronounced in beams
subjected to a single concentrated load.

CONCLUSIONS

1. While the relevant equations in the current ACI 318 and CAN3-
A.23.3 codes give conservative values for f,, they do not
accurately reflect the behaviour of an unbonded partially
prestressed concrete beam.

2. The value of f in an unbonded partially prestressed concrete
beam with span to depth ratio greater than about 10 and subjected
to third-point loading appears to be independent of span to depth

ratio.

3. The level of shear force in an unbonded beam influences the stress
in the prestressed reinforcement at ultimate.

4. Mathematical models capable of simulating the behaviour of an

unbonded partially prestressed concrete beam are available.

REFERENCES

1. Rabbat, B.G. and Sowlat, K., "Testing of Segmental Concrete Girder
with External Tendons", PCI Journal, March/April, 1987, pp. 86-
107.

2. Nilson, A.H., "Design of Prestressed Concrete", Second Edition,

Wiley New York, 1987.



10.

11.

12.

13.

14.

15.

195

Baker, A.L.L., "A Plastic Theory of Design for Ordinary Reinforced
and Prestressed Concrete, Including Moment Redistribution in
Continuous Members", Magazine of Concrete Research (London), Vol.
1, No. 2, June 1949. pp. 57-66.

Gifford, F.W., "The Design of Simply Supported Prestressed
Concrete Beams for Ultimate Loads", Proceedings of the Institution
of Civil Engineers, Vol. 3, Part 3, 1954, pp. 125-143.

Janney, J.R., Hognestad, E. and McHenry, D., "Ultimate Flexural
Strength of Prestressed and Conventionally Reinforced Concrete
Beams", ACI Journal, Vol. 27, No. 6, Feb. 1945. pp. 601-620.

Tam, A. and Pannell, F.M., "The Ultimate Moment of Resistance of
Unbonded Partially Prestressed Reinforced Concrete Beams",
Magazine of Concrete Research, Vol. 28, No. 97, Dec. 1976, pp.
203-208.

Naaman, A.E., "A New Methodology for the Analysis of Beams
Prestressed with External or Unbonded Tendons", External
Prestressing in Bridges, ACI SP-120, 1990, pp. 339-354.

ACI 318-63, "Building Code Requirements for Reinforced Concrete”,
American Concrete Institute, Detroit, 1963.

Burns, N.H. and Pierce, D.M., "Strength and Behaviour of
Prestressed Concrete Members with Unbonded Tendons", PCI Journal,
Vol. 12, No. 5, Oct. 1967. pp. 15-29.

Warwaruk, J., Sozen, M.A. and Siess, C.P., "Investigation of
Prestressed Concrete for Highway Bridges, Part 3: Strength and
Behaviour in Flexure of Prestressed Concrete Beams", Bulletin No.
464, Engineering Experiment Station, University of Illinois,
Urbana, 1962. 105 pp.

Mattock, A.H., Yamazaki, J. and Kattula, B.T., "Comparative Study
of Prestressed Concrete Beams, with and without Bond", ACI
Journal, Vol. 68, No. 3, Feb. 1971, pp. 116-125.

ACT 318-71, "Building Code Requirements for Reinforced Concrete",
American Concrete Institute, Detroit, 1971.

ACI 318-77, "Building Code Requirements for Reinforced Concrete",
American Concrete Institute, Detroit, 1977.

CSA Standard A23.3-1973, "Code for the Design of Concrete
Structures for Buildings", Canadian Standards Association,
Rexdale, Ontario, 1973.

CAN3-A23.3-M77, "Code for the Design of Concrete Structures for
Buildings", Canadian |Standards Association, Rexdale, Ontario,



196

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

1977.

Cooke, N., Park, R. and Yong, P., "Flexural Strength of
Prestressed Concrete Members with Unbonded Tendons", PCI Journal,
Vol. 26, No. 6, Nov./Dec. 1981. pp. 52-80.

Mojtahedi, S. and Gamble, W.L., "Ultimate Steel Stresses in
Unbonded Prestressed Concrete", Proceedings, ASCE, Structural
Division, Vol. 104, No. 7, July 1978, pp. 1159-1165.

ACI 318-83, "Building Code Requirements for Reinforced Concrete",
American Concrete Institute, Detroit, 1983.

ACI 318-89, "Building Code Requirements for Reinforced Concrete
and Commentary", American Concrete Institute, Detroit, 1989.

Harajli, M.H., "Effect of Span-Depth Ratio on the Ultimate Steel
Stress in Unbonded Prestressed Concrete Members", ACI Structural
Journal, Vol. 87, No. 3, May-June 1990, pp. 305-312.

Du, G. and Tao, X., "Ultimate Stress of Unbonded Tendons in
Partially Prestressed Concrete Beams", PCI Journal, Vol. 30, No.
6, Nov-Dec. 1985. pp. 72-91.

Harajli, M.H. and Hijazi, S., "Evaluation of the Ultimate Steel
Stress in Unbonded Partially Prestressed Concrete Beams", PCI
Journal, (to be published).

CAN3-A23.3-M84, "Design of Concrete Structures for Buildings",
Canadian Standards Association, Rexdale, Ontario, 1984.

Loov, R., "Flexural Strength of Prestressed Beams with Unbonded
Tendons", Lecture presented to the North East Forestry University,
Harbin, China, June 1987, unpublished.

Chouinard, K.L., "Tendon Stress at Ultimate in Unbonded Partially
Prestressed Concrete Beams”, M.Sc. Thesis, Queen’'s University,
Kingston, Ontario, Canada, 1989.

Kibbee, M., "Evaluation of Models for Predicting Steel Stress at
Ultimate in Unbonded Prestressed Concrete Beams", M.Sc. Thesis,
Queen’s University, Kingston, Ontario, Canada, (in preparation).

Kang, Y.J., "Nonlinear Geometric Material and Time Dependent
Analysis of Reinforced and Prestressed Concrete Frames", Report
No. UC SESM 77-1, University of California, Berkeley, 1977.

Collins, M.P. and Mitchell, D., "Prestressed Concrete Basics",
Canadian Prestressed Concrete Institute, Ottawa, Ontario, 1987.

Pannell, F.N., "The Ultimate Moment of Resistance of Unbonded



197

Prestressed Concrete Beams", Magazine of Concrete Research, Vol.
21, No. 66, March 1969, pp. 43-54.

30. ANSYS, User's Manual, Swanson Analysis Systems, Inc., Houston,
1986.

31. Hadj Taieb, M., "Influence of Shear on Tendon Stress in Unbonded
Partially Prestressed Concrete Beams", M.Sc. Thesis, Queen's
University, Kingston, Ontario, Canada, 1990.

NOTATION

Aps

= area of prestressed reinforcement
= area of bonded nonprestressed reinforcement
= width of beam section

= distance from extreme compression fiber to neutral axis at
ultimate

= distance from extreme compression fiber to neutral axis
calculated assuming a stress level in the prestressing

reinforcement equivalent to f,

= distance from top fiber to centroid of nonprestressed bonded
reinforcement

= distance from top fiber to centroid of prestressed
reinforcement

= strain compatibility factor

= compressive strength of concrete

= stress in prestressed reinforcement at ultimate

= tensile strength of prestressed reinforcement

= yield strength of prestressed reinforcement

= effective stress in prestressed reinforcement after losses
= yield strength of the bonded nonprestressed reinforcement
= ultimate curvature

= equivalent distance between applied loads
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90

ds

Afy

Ps

actual distance between applied loads

span length

length of the tendon between anchors divided by the number of
plastic hinges required to develop a failure mechanism in the
span under consideration

combined reinforcement index ( = qg + Q)

bonded nonprestressed reinforcement index ( = psfy/f’c)
prestressed reinforcement index ( = ppf“/f'c)

increase in the prestressed reinforcement stress at ultimate

prestressed reinforcement ratio ( = Ay, /bdy)

bonded nonprestressed reinforcement ratio ( = A /bd)
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Abstract

A set of design aids 1is presented to facilitate the choice of
prestressing percentage in partially prestressed concrete members, when
cracking and concrete compression stress are the governing
serviceability 1limit states. A design example is also developed to
illustrate the use of the design charts given.

1. Introduction

In order to control the service behavior (i.e., cracking, deflection and
maximum stresses) of structural concrete, Partially Prestressed Concrete
(PPC) members may be effectively adopted in practice. PPC design is,
however, generally more complex than Prestressed Concrete (PC) or Rein-
forced Concrete (RC) design in that, in order to meet given performance
criteria, it is also necessary to determine the value of the prestress-
ing to non-prestressing steel ratio.

Optimal design approaches based on the minimization of a cost merit
function were presented in [4] and [13]. These approaches have general
validity, but their results are function of the unit costs, variable in
time and from country to country. A simpler approach, allowing for the
minimization of the partial prestressing ratio (PPR) through the sati-
sfaction of code requirements such as ultimate strength, crack opening,
admissible stresses and deflection, was proposed in [12]. Finally, a
practical flexural design procedure for prestressed concrete continuous
girders based on simultaneously ensuring specified margins of safety
against both limit states of section and structural failure was proposed
in [5,6,7].
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